X86 instruction listings
Encyclopedia
The x86 instruction set
Instruction set
An instruction set, or instruction set architecture , is the part of the computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external I/O...

 has been extended several times, introducing wider registers and datatypes and/or new functionality.

x86 integer instructions

This is the full 8086/8088 instruction set, but most, if not all of these instructions are available in 32-bit mode, they just operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts. See also x86 assembly language
X86 assembly language
x86 assembly language is a family of backward-compatible assembly languages, which provide some level of compatibility all the way back to the Intel 8008. x86 assembly languages are used to produce object code for the x86 class of processors, which includes Intel's Core series and AMD's Phenom and...

 for a quick tutorial for this processor family.
The updated instruction set is also grouped according to architecture (i386, i486, i686) and more generally is referred to as x86_32 and x86_64 (also known as AMD64).

Original 8086/8088 instructions

Instruction Meaning Notes
AAA
Intel BCD opcodes
The Intel BCD opcodes are a set of x86 instructions that operates with BCD numbers.The radix used for the representation of numbers in the x86 processors is 2.This is called a binary numeral system....

 
ASCII adjust AL after addition used with unpacked binary coded decimal
AAD ASCII adjust AX before division 8086/8088 datasheet documents only base 10 version of the AAD instruction (opcode 0xD5 0x0A), but any other base will work. Later Intel's documentation has the generic form too. NEC V20 and V30 (and possibly other NEC V-series CPUs) always use base 10, and ignore the argument, causing a number of incompatibilities
AAM ASCII adjust AX after multiplication Only base 10 version is documented, see notes for AAD
AAS ASCII adjust AL after subtraction
ADC Add with carry destination := destination + source + carry flag
Carry flag
In computer processors the carry flag is a single bit in a system status register used to indicate when an arithmetic carry or borrow has been generated out of the most significant ALU bit position...

ADD Add
AND Logical AND
Logical conjunction
In logic and mathematics, a two-place logical operator and, also known as logical conjunction, results in true if both of its operands are true, otherwise the value of false....

 
CALL Call procedure
CBW Convert byte to word
CLC Clear carry flag
Carry flag
In computer processors the carry flag is a single bit in a system status register used to indicate when an arithmetic carry or borrow has been generated out of the most significant ALU bit position...

 
CLD Clear direction flag
Direction flag
The Direction Flag is a flag that controls the left-to-right or right-to-left direction of string processing stored in the FLAGS register on all x86 compatible CPUs. It is bit 10....

 
CLI  Clear interrupt flag
IF (x86 flag)
IF is a system flag bit in the x86 architecture's FLAGS register, which determines whether or not the CPU will handle maskable hardware interrupts....

 
CMC Complement carry flag
CMP Compare operands
CMPSB Compare bytes in memory
CMPSW Compare words
CWD Convert word to doubleword
DAA
Intel BCD opcodes
The Intel BCD opcodes are a set of x86 instructions that operates with BCD numbers.The radix used for the representation of numbers in the x86 processors is 2.This is called a binary numeral system....

 
Decimal adjust AL after addition (used with packed binary coded decimal)
DAS
Intel BCD opcodes
The Intel BCD opcodes are a set of x86 instructions that operates with BCD numbers.The radix used for the representation of numbers in the x86 processors is 2.This is called a binary numeral system....

 
Decimal adjust AL after subtraction
DEC Decrement by 1
DIV Unsigned divide
ESC Used with floating-point unit 
HLT
HLT
In the x86 computer architecture, HLT is an assembly language instruction which halts the CPU until the next external interrupt is fired. Such interrupts are used by devices in order to signal to the CPU that an event occurred which the CPU shall react on...

 
Enter halt state
IDIV Signed divide
IMUL Signed multiply
IN Input from port
INC Increment by 1
INT
INT (x86 instruction)
INT is an assembly language instruction for x86 processors that generates a software interrupt. It takes the interrupt number formatted as a byte value.When written in assembly language, the instruction is written like this:...

 
Call to interrupt
Interrupt
In computing, an interrupt is an asynchronous signal indicating the need for attention or a synchronous event in software indicating the need for a change in execution....

 
INTO Call to interrupt if overflow
IRET Return from interrupt
Jxx Jump if condition (JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ)
JMP
JMP (x86 instruction)
In the x86 assembly language, the JMP instruction performs an unconditional jump. Such an instruction transfers the flow of execution by changing the instruction pointer register...

 
Jump
LAHF Load flags into AH register
LDS Load pointer using DS
LEA Load Effective Address
LES Load ES with pointer
LOCK Assert BUS LOCK# signal (for multiprocessing)
LODSB Load string byte
LODSW Load string word
LOOP/LOOPx Loop control (LOOPE, LOOPNE, LOOPNZ, LOOPZ)
MOV
MOV (x86 instruction)
In the x86 assembly language, the MOV instruction is a mnemonic for the copying of data from one location to another. The x86 assembly language has a number of different move instructions...

 
Move
MOVSB Move byte from string to string
MOVSW Move word from string to string
MUL Unsigned multiply
NEG Two's complement negation
NOP
NOP
In computer science, NOP or NOOP is an assembly language instruction, sequence of programming language statements, or computer protocol command that effectively does nothing at all....

 
No operation opcode (0x90) equivalent to XCHG EAX, EAX
NOT Negate the operand, logical NOT
OR Logical OR
Logical disjunction
In logic and mathematics, a two-place logical connective or, is a logical disjunction, also known as inclusive disjunction or alternation, that results in true whenever one or more of its operands are true. E.g. in this context, "A or B" is true if A is true, or if B is true, or if both A and B are...

 
OUT Output to port
POP Pop data from stack
Stack (data structure)
In computer science, a stack is a last in, first out abstract data type and linear data structure. A stack can have any abstract data type as an element, but is characterized by only three fundamental operations: push, pop and stack top. The push operation adds a new item to the top of the stack,...

 
POP CS (opcode 0x0F) works only on 8086/8088. Later CPUs use 0x0F as a prefix for newer instructions.
POPF Pop data into flags register
FLAGS register (computing)
The FLAGS register is the status register in Intel x86 microprocessors that contains the current state of the processor. This register is 16 bits wide. Its successors, the EFLAGS and RFLAGS registers, are 32 bits and 64 bits wide, respectively...

 
PUSH Push data onto stack
PUSHF Push flags onto stack
RCL Rotate left (with carry)
RCR Rotate right (with carry)
REPxx Repeat MOVS/STOS/CMPS/LODS/SCAS (REP, REPE, REPNE, REPNZ, REPZ)
RET Return from procedure
RETN Return from near procedure
RETF Return from far procedure
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift Arithmetically
Arithmetic shift
In computer programming, an arithmetic shift is a shift operator, sometimes known as a signed shift . For binary numbers it is a bitwise operation that shifts all of the bits of its operand; every bit in the operand is simply moved a given number of bit positions, and the vacant bit-positions are...

 left (signed shift left)
SAR Shift Arithmetically right (signed shift right)
SBB Subtraction with borrow
SCASB Compare byte string
SCASW Compare word string
SHL Shift
Logical shift
In computer science, a logical shift is a bitwise operation that shifts all the bits of its operand. Unlike an arithmetic shift, a logical shift does not preserve a number's sign bit or distinguish a number's exponent from its mantissa; every bit in the operand is simply moved a given number of bit...

 left (unsigned shift left)
SHR Shift right (unsigned shift right)
STC Set carry flag
STD Set direction flag
STI  Set interrupt flag
STOSB Store byte in string
STOSW Store word in string
SUB Subtraction
TEST
TEST (x86 instruction)
In the x86 assembly language, the TEST instruction performs a bitwise AND on two operands. The flags SF, ZF, PF, CF, OF and AF are modified while the result of the AND is discarded. There are 9 different opcodes for the TEST instruction depending on the type and size of the operands. It can compare...

 
Logical compare (AND)
WAIT Wait until not busy Waits until BUSY# pin is inactive (used with floating-point unit)
XCHG Exchange data
XLAT Table look-up translation
XOR Exclusive OR 

Added with 80186/80188

Instruction Meaning Notes
BOUND Check array index against bounds raises software interrupt 5 if test fails
ENTER Enter stack frame equivalent to
PUSH BP
MOV BP, SP
SUB SP, n
INS Input from port to string equivalent to

IN (E)AX, DX
MOV ES:[(E)DI], (E)AX
adjust (E)DI according to operand size and DF
LEAVE Leave stack frame equivalent to
MOV SP, BP
POP BP
OUTS Output string to port equivalent to

MOV (E)AX, DS:[(E)SI]
OUT DX, (E)AX
adjust (E)SI according to operand size and DF
POPA Pop all general purpose registers from stack equivalent to
POP DI, SI, BP, SP, BX, DX, CX, AX
PUSHA Push all general purpose registers onto stack equivalent to
PUSH AX, CX, DX, BX, SP, BP, SI, DI

Added with 80286

Instruction Meaning Notes
ARPL Adjust RPL field of selector
CLTS Clear task-switched flag in register CR0
LAR Load access rights byte
LGDT Load global descriptor table
LIDT Load interrupt descriptor table
LLDT Load local descriptor table
LMSW Load machine status word
LOADALL
LOADALL
LOADALL is the common name for two different, undocumented machine instructions of Intel 80286 and Intel 80386 processors, which allow access to areas normally outside of the IA-32 API scope, like descriptor cache registers...

 
Load all CPU registers, including internal ones such as GDT Undocumented, (80)286 and 386 only
LSL Load segment limit
LTR
Load Task Register
The LTR x86 instruction stands for load task register and is used in operating systems that support multitasking. LTR is supported only in protected mode and long mode, not in real mode or virtual 8086 mode. It must be executed when the CPL is 0, and therefore cannot be used by application programs...

 
Load task register
SGDT Store global descriptor table
SIDT Store interrupt descriptor table
SLDT Store local descriptor table
SMSW Store machine status word
STR Store task register
VERR Verify a segment for reading
VERW Verify a segment for writing

Added with 80386

Instruction Meaning Notes
BSF Bit scan forward
BSR Bit scan reverse
BT Bit test
BTC Bit test and complement
BTR Bit test and reset
BTS Bit test and set
CDQ Convert double-word to quad-word Sign-extends EAX into EDX, forming the quad-word EDX:EAX. Since (I)DIV uses EDX:EAX as its input, CDQ must be called after setting EAX if EDX is not manually initialized (as in 64/32 division) before (I)DIV.
CMPSD Compare string double-word Compares ES:[(E)DI] with DS:[SI]
CWDE Convert word to double-word Unlike CWD, CWDE sign-extends AX to EAX instead of AX to DX:AX
INSB, INSW, INSD Input from port to string with explicit size same as INS
IRETx Interrupt return; D suffix means 32-bit return, F suffix means do not generate epilogue code (i.e. LEAVE instruction) Use IRETD rather than IRET in 32-bit situations
JCXZ, JECXZ Jump if register (E)CX is zero
LFS, LGS Load far pointer
LSS Load stack segment
LODSD Load string can be prefixed with REP
LOOPW, LOOPD Loop Loop; counter register is (E)CX
LOOPEW, LOOPED Loop while equal
LOOPZW, LOOPZD Loop while zero
LOOPNEW, LOOPNED Loop while not equal
LOOPNZW, LOOPNZD Loop while not zero
MOVSW, MOVSD Move data from string to string
MOVSX Move with sign-extend
MOVZX Move with zero-extend
POPAD Pop all double-word (32-bit) registers from stack Does not pop register ESP off of stack
POPFD Pop data into EFLAGS register
PUSHAD Push all double-word (32-bit) registers onto stack
PUSHFD Push EFLAGS register onto stack
SCASD Scan string data double-word
SETx Set byte to one on condition (SETA, SETAE, SETB, SETBE, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA, SETNAE, SETNB, SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE, SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPE, SETPO, SETS, SETZ)
SHLD Shift left double-word
SHRD Shift right double-word
STOSx Store string

Added with 80486

Instruction Meaning Notes
BSWAP Byte Swap Only works for 32 bit registers.
CMPXCHG CoMPare and eXCHanGe
INVD Invalidate Internal Caches
INVLPG Invalidate TLB Entry
WBINVD Write Back and Invalidate Cache
XADD Exchange and Add

Added with Pentium

Instruction Meaning Notes
CPUID
CPUID
The CPUID opcode is a processor supplementary instruction for the x86 architecture. It was introduced by Intel in 1993 when it introduced the Pentium and SL-Enhanced 486 processors....

 
CPU IDentification This was also added to later 80486 processors.
CMPXCHG8B CoMPare and eXCHanGe 8 bytes
RDMSR  ReaD from Model-Specific Register
RDTSC  ReaD Time Stamp Counter
WRMSR  WRite to Model-Specific Register
RSM http://www.softeng.rl.ac.uk/st/archive/SoftEng/SESP/html/SoftwareTools/vtune/users_guide/mergedProjects/analyzer_ec/mergedProjects/reference_olh/mergedProjects/instructions/instruct32_hh/vc279.htm Resume from System Management Mode This was introduced by the i386SL and later and is also in the i486SL
Intel 80486SL
The Intel's i486SL is the power-saving variant of the i486DX microprocessor. The SL was designed for use in mobile computers. It was produced between November 1992 and June 1993. Clock speeds available were 20, 25 and 33 MHz...

 and later. Resumes from System Management Mode
System Management Mode
System Management Mode is an operating mode in which all normal execution is suspended, and special separate software is executed in high-privilege mode. It was first released with the Intel 386SL...

 (SMM)

Added with Pentium MMX

Instruction Meaning Notes
RDPMC  Read the PMC [Performance Monitoring Counter] Specified in the ECX register into registers EDX:EAX


Also MMX registers and MMX support instructions were added. They are usable for both integer and floating point operations, see below.

Added with Pentium Pro
Pentium Pro
The Pentium Pro is a sixth-generation x86 microprocessor developed and manufactured by Intel introduced in November 1, 1995 . It introduced the P6 microarchitecture and was originally intended to replace the original Pentium in a full range of applications...

Conditional MOV:
CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO, CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ, SYSENTER (SYStem call ENTER), SYSEXIT (SYStem call EXIT), UD2

Added with SSE
Streaming SIMD Extensions
In computing, Streaming SIMD Extensions is a SIMD instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series processors as a reply to AMD's 3DNow! . SSE contains 70 new instructions, most of which work on single precision floating point...

MASKMOVQ, MOVNTPS, MOVNTQ, PREFETCH0, PREFETCH1, PREFETCH2, PREFETCHNTA, SFENCE (for Cacheability and Memory Ordering
Memory ordering
Memory ordering is a group of properties of the modern microprocessors, characterising their possibilities in memory operations reordering. It is a type of out-of-order execution. Memory reordering can be used to fully utilize different cache and memory banks.On most modern uniprocessors memory...

)

Added with SSE2
SSE2
SSE2, Streaming SIMD Extensions 2, is one of the Intel SIMD processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2001. It extends the earlier SSE instruction set, and is intended to fully supplant MMX. Intel extended SSE2 to create SSE3...

CLFLUSH, LFENCE, MASKMOVDQU, MFENCE, MOVNTDQ, MOVNTI, MOVNTPD, PAUSE (for Cacheability)

Added with x86-64
X86-64
x86-64 is an extension of the x86 instruction set. It supports vastly larger virtual and physical address spaces than are possible on x86, thereby allowing programmers to conveniently work with much larger data sets. x86-64 also provides 64-bit general purpose registers and numerous other...

CMPXCHG16B (CoMPare and eXCHanGe 16 Bytes), RDTSCP (ReaD Time Stamp Counter and Processor ID)

Added with SSE3
SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions , is the third iteration of the SSE instruction set for the IA-32 architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU...

LDDQU (for Video Encoding)

MONITOR, MWAIT (for thread
Thread (computer science)
In computer science, a thread of execution is the smallest unit of processing that can be scheduled by an operating system. The implementation of threads and processes differs from one operating system to another, but in most cases, a thread is contained inside a process...

 synchronization; only on processors supporting Hyper-threading
Hyper-threading
Hyper-threading is Intel's term for its simultaneous multithreading implementation in its Atom, Intel Core i3/i5/i7, Itanium, Pentium 4 and Xeon CPUs....

 and some dual-core processors like Core 2, Phenom
Phenom (processor)
Phenom is the 64-bit AMD desktop processor line based on the K10 microarchitecture, in what AMD calls family 10h processors, sometimes incorrectly called "K10h". Triple-core versions belong to the Phenom 8000 series and quad cores to the AMD Phenom X4 9000 series...

 and others)

Added with AMD-V

CLGI, SKINIT, STGI, VMLOAD, VMMCALL, VMRUN, VMSAVE (SVM instructions of AMD-V)

Added with Intel VT-x

VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, VMXON

Original 8087 instructions

Instruction Meaning Notes
F2XM1 2x - 1 more precise than 2x for close to zero
FABS Absolute value
FADD Add
FADDP Add and pop
FBLD Load BCD
FBSTP Store BCD and pop
FCHS Change sign
FCLEX Clear exceptions
FCOM Compare
FCOMP Compare and pop
FCOMPP Compare and pop twice
FDECSTP Decrement floating point stack pointer
FDISI Disable interrupts 8087 only, otherwise FNOP
FDIV Divide Pentium FDIV bug
Pentium FDIV bug
The Pentium FDIV bug was a bug in the Intel P5 Pentium floating point unit . Certain floating point division operations performed with these processors would produce incorrect results...

FDIVP Divide and pop
FDIVR Divide reversed
FDIVRP Divide reversed and pop
FENI Enable interrupts 8087 only, otherwise FNOP
FFREE Free register
FIADD Integer add
FICOM Integer compare
FICOMP Integer compare and pop
FIDIV Integer divide
FIDIVR Integer divide reversed
FILD Load integer
FIMUL Integer multiply
FINCSTP Increment floating point stack pointer
FINIT Initialize floating point processor
FIST Store integer
FISTP Store integer and pop
FISUB Integer subtract
FISUBR Integer subtract reversed
FLD Floating point load
FLD1 Load 1.0 onto stack
FLDCW Load control word
FLDENV Load environment state
FLDENVW
FLDL2E Load log2(e) onto stack
FLDL2T Load log2(10) onto stack
FLDLG2 Load log10(2) onto stack
FLDLN2 Load ln(2) onto stack
FLDPI Load π onto stack
FLDZ Load 0.0 onto stack
FMUL Multiply
FMULP Multiply and pop
FNCLEX Clear exceptions, no wait
FNDISI Disable interrupts, no wait 8087 only, otherwise FNOP
FNENI Enable interrupts, no wait 8087 only, otherwise FNOP
FNINIT Initialize floating point processor, no wait
FNOP No operation
FNSAVE Save FPU state, no wait, 8-bit
FNSAVEW Save FPU state, no wait, 16-bit
FNSTCW Store control word, no wait
FNSTENV Store FPU environment, no wait
FNSTENVW Store FPU environment, no wait, 16-bit
FNSTSW Store status word, no wait
FPATAN Partial arctangent
FPREM Partial remainder
FPTAN Partial tangent
FRNDINT Round to integer
FRSTOR Restore saved state
FRSTORW Restore saved state Perhaps not actually available in 8087
FSAVE Save FPU state
FSAVEW Save FPU state, 16-bit
FSCALE Scale by factor of 2
FSQRT Square root
FST Floating point store
FSTCW Store control word
FSTENV Store FPU environment
FSTENVW Store FPU environment, 16-bit
FSTP Store and pop
FSTSW Store status word
FSUB Subtract
FSUBP Subtract and pop
FSUBR Reverse subtract
FSUBRP Reverse subtract and pop
FTST Test for zero
FWAIT Wait while FPU is executing
FXAM Examine condition flags
FXCH Exchange registers
FXTRACT Extract exponent and significand
FYL2X y * log2(x) if , then the base- logarithm is computed
FYL2XP1 y * log2(x+1) more precise than if is close to zero

Added with 80387

FCOS, FLDENVD, FNSAVED, FNSTENVD, FPREM1, FRSTORD, FSAVED, FSIN, FSINCOS, FSTENVD, FUCOM, FUCOMP, FUCOMPP

Added with Pentium Pro

  • FCMOV
    FCMOV
    FCMOV is a floating point conditional move opcode of the Intel x86 architecture, first introduced in Pentium Pro processors. It copies the contents of one of the floating point stack register, depending on the contents of EFLAGS integer flag register, to the ST register...

     variants: FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU
  • FCOMI variants: FCOMI, FCOMIP, FUCOMI, FUCOMIP

Added with SSE

FXRSTOR, FXSAVE

These are also supported on later Pentium IIs which do not contain SSE support

Added with SSE3

FISTTP (x87 to integer conversion with truncation regardless of status word)

Added with Pentium MMX

EMMS, MOVD, MOVQ, PACKSSDW, PACKSSWB, PACKUSWB, PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW, PAND, PANDN, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW, PMADDWD, PMULHW, PMULLW, POR, PSLLD, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLQ, PSRLW, PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW, PUNPCKHBW, PUNPCKHDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ, PUNPCKLWD, PXOR

Added with Athlon
Athlon
Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by Advanced Micro Devices . The original Athlon was the first seventh-generation x86 processor and, in a first, retained the initial performance lead it had over Intel's competing processors...

Same as the SSE SIMD
SIMD
Single instruction, multiple data , is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously...

 integer instructions which operated on MMX registers.

EMMI
Extended MMX
Extended MMX, also known as EMMI , was an instruction set developed by Cyrix and implemented on their 6x86 MX and MII line of processors. It extended the MMX instruction set with 12 new instructions useful in multimedia applications. The extensions were not enabled by default, requiring the BIOS or...

 instructions - added with 6x86MX from Cyrix
Cyrix
Cyrix Corporation was a microprocessor developer that was founded in 1988 in Richardson, Texas as a specialist supplier of high-performance math coprocessors for 286 and 386 microprocessors. The company was founded by former Texas Instruments staff members and had a long but troubled relationship...

, deprecated now

PAVEB, PADDSIW, PMAGW, PDISTIB, PSUBSIW, PMVZB, PMULHRW, PMVNZB, PMVLZB, PMVGEZB, PMULHRIW, PMACHRIW

Added with K6-2

FEMMS, PAVGUSB, PF2ID, PFACC, PFADD, PFCMPEQ, PFCMPGE, PFCMPGT, PFMAX, PFMIN, PFMUL, PFRCP, PFRCPIT1, PFRCPIT2, PFRSQIT1, PFRSQRT, PFSUB, PFSUBR, PI2FD, PMULHRW, PREFETCH, PREFETCHW

SSE SIMD floating-point instructions

ADDPS, ADDSS, CMPPS, CMPSS, COMISS, CVTPI2PS, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, DIVPS, DIVSS, LDMXCSR, MAXPS, MAXSS, MINPS, MINSS, MOVAPS, MOVHLPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVNTPS, MOVSS, MOVUPS, MULPS, MULSS, RCPPS, RCPSS, RSQRTPS, RSQRTSS, SHUFPS, SQRTPS, SQRTSS, STMXCSR, SUBPS, SUBSS, UCOMISS, UNPCKHPS, UNPCKLPS

SSE SIMD integer instructions

ANDNPS, ANDPS, ORPS, PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, XORPS
Instruction Opcode Meaning Notes
MOVUPS xmm1, xmm2/m128 0F 10 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm1, xmm2/m32 F3 0F 10 /r Move Scalar Single-Precision Floating-Point Values
MOVUPS xmm2/m128, xmm1 0F 11 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm2/m32, xmm1 F3 0F 11 /r Move Scalar Single-Precision Floating-Point Values
MOVLPS xmm, m64 0F 12 /r Move Low Packed Single-Precision Floating-Point Values
MOVHLPS xmm1, xmm2 0F 12 /r Move Packed Single-Precision Floating-Point Values High to Low
MOVLPS m64, xmm 0F 13 /r Move Low Packed Single-Precision Floating-Point Values
UNPCKLPS xmm1, xmm2/m128 0F 14 /r Unpack and Interleave Low Packed Single-Precision Floating-Point Values
UNPCKHPS xmm1, xmm2/m128 0F 15 /r Unpack and Interleave High Packed Single-Precision Floating-Point Values
MOVHPS xmm, m64 0F 16 /r Move High Packed Single-Precision Floating-Point Values
MOVLHPS xmm1, xmm2 0F 16 /r Move Packed Single-Precision Floating-Point Values Low to High
MOVHPS m64, xmm 0F 17 /r Move High Packed Single-Precision Floating-Point Values
PREFETCHNTA 0F 18 /0 Prefetch Data Into Caches (non-temporal data with respect to all cache levels)
PREFETCH0 0F 18 /1 Prefetch Data Into Caches (temporal data)
PREFETCH1 0F 18 /2 Prefetch Data Into Caches (temporal data with respect to first level cache)
PREFETCH2 0F 18 /3 Prefetch Data Into Caches (temporal data with respect to second level cache)
NOP 0F 1F /0 No Operation
MOVAPS xmm1, xmm2/m128 0F 28 /r Move Aligned Packed Single-Precision Floating-Point Values
MOVAPS xmm2/m128, xmm1 0F 29 /r Move Aligned Packed Single-Precision Floating-Point Values
CVTPI2PS xmm, mm/m64 0F 2A /r Convert Packed Dword Integers to Packed Single-Precision FP Values
CVTSI2SS xmm, r/m32 F3 0F 2A /r Convert Dword Integer to Scalar Single-Precision FP Value
MOVNTPS m128, xmm 0F 2B /r Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
CVTTPS2PI mm, xmm/m64 0F 2C /r Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers
CVTTSS2SI r32, xmm/m32 F3 0F 2C /r Convert with Truncation Scalar Single-Precision FP Value to Dword Integer
CVTPS2PI mm, xmm/m64 0F 2D /r Convert Packed Single-Precision FP Values to Packed Dword Integers
CVTSS2SI r32, xmm/m32 F3 0F 2D /r Convert Scalar Single-Precision FP Value to Dword Integer
UCOMISS xmm1, xmm2/m32 0F 2E /r Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
COMISS xmm1, xmm2/m32 0F 2F /r Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
SQRTPS xmm1, xmm2/m128 0F 51 /r Compute Square Roots of Packed Single-Precision Floating-Point Values
SQRTSS xmm1, xmm2/m32 F3 0F 51 /r Compute Square Root of Scalar Single-Precision Floating-Point Value
RSQRTPS xmm1, xmm2/m128 0F 52 /r Compute Reciprocal of Square Root of Packed Single-Precision Floating-Point Value
RSQRTSS xmm1, xmm2/m32 F3 0F 52 /r Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value
RCPPS xmm1, xmm2/m128 0F 53 /r Compute Reciprocal of Packed Single-Precision Floating-Point Values
RCPSS xmm1, xmm2/m32 F3 0F 53 /r Compute Reciprocal of Scalar Single-Precision Floating-Point Values
ANDPS xmm1, xmm2/m128 0F 54 /r Bitwise Logical AND of Packed Single-Precision Floating-Point Values
ANDNPS xmm1, xmm2/m128 0F 55 /r Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
ORPS xmm1, xmm2/m128 0F 56 /r Bitwise Logical OR of Single-Precision Floating-Point Values
XORPS xmm1, xmm2/m128 0F 57 /r Bitwise Logical XOR for Single-Precision Floating-Point Values
ADDPS xmm1, xmm2/m128 0F 58 /r Add Packed Single-Precision Floating-Point Values
ADDSS xmm1, xmm2/m32 F3 0F 58 /r Add Scalar Single-Precision Floating-Point Values
MULPS xmm1, xmm2/m128 0F 59 /r Multiply Packed Single-Precision Floating-Point Values
MULSS xmm1, xmm2/m32 F3 0F 59 /r Multiply Scalar Single-Precision Floating-Point Values
SUBPS xmm1, xmm2/m128 0F 5C /r Subtract Packed Single-Precision Floating-Point Values
SUBSS xmm1, xmm2/m32 F3 0F 5C /r Subtract Scalar Single-Precision Floating-Point Values
MINPS xmm1, xmm2/m128 0F 5D /r Return Minimum Packed Single-Precision Floating-Point Values
MINSS xmm1, xmm2/m32 F3 0F 5D /r Return Minimum Scalar Single-Precision Floating-Point Values
DIVPS xmm1, xmm2/m128 0F 5E /r Divide Packed Single-Precision Floating-Point Values
DIVSS xmm1, xmm2/m32 F3 0F 5E /r Divide Scalar Single-Precision Floating-Point Values
MAXPS xmm1, xmm2/m128 0F 5F /r Return Maximum Packed Single-Precision Floating-Point Values
MAXSS xmm1, xmm2/m32 F3 0F 5F /r Return Maximum Scalar Single-Precision Floating-Point Values
PSHUFW mm1, mm2/m64, imm8 0F 70 /r ib Shuffle Packed Words
LDMXCSR m32 0F AE /2 Load MXCSR Register State
STMXCSR m32 0F AE /3 Store MXCSR Register State
SFENCE 0F AE /7 Store Fence
CMPPS xmm1, xmm2/m128, imm8 0F C2 /r ib Compare Packed Single-Precision Floating-Point Values
CMPSS xmm1, xmm2/m32, imm8 F3 0F C2 /r ib Compare Scalar Single-Precision Floating-Point Values
PINSRW mm, r32/m16, imm8 0F C4 /r Insert Word
PEXTRW r32, mm, imm8 0F C5 /r Extract Word
SHUFPS xmm1, xmm2/m128, imm8 0F C6 /r ib Shuffle Packed Single-Precision Floating-Point Values
PMOVMSKB r32, mm 0F D7 /r Move Byte Mask
PMINUB mm1, mm2/m64 0F DA /r Minimum of Packed Unsigned Byte Integers
PMAXUB mm1, mm2/m64 0F DE /r Maximum of Packed Unsigned Byte Integers
PAVGB mm1, mm2/m64 0F E0 /r Average Packed Integers
PAVGW mm1, mm2/m64 0F E3 /r Average Packed Integers
PMULHUW mm1, mm2/m64 0F E4 /r Multiply Packed Unsigned Integers and Store High Result
MOVNTQ m64, mm 0F E7 /r Store of Quadword Using Non-Temporal Hint
PMINSW mm1, mm2/m64 0F EA /r Minimum of Packed Signed Word Integers
PMAXSW mm1, mm2/m64 0F EE /r Maximum of Packed Signed Word Integers
PSADBW mm1, mm2/m64 0F F6 /r Compute Sum of Absolute Differences
MASKMOVQ mm1, mm2 0F F7 /r Store Selected Bytes of Quadword

SSE2
SSE2
SSE2, Streaming SIMD Extensions 2, is one of the Intel SIMD processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2001. It extends the earlier SSE instruction set, and is intended to fully supplant MMX. Intel extended SSE2 to create SSE3...

 instructions

Added with Pentium 4
Pentium 4
Pentium 4 was a line of single-core desktop and laptop central processing units , introduced by Intel on November 20, 2000 and shipped through August 8, 2008. They had a 7th-generation x86 microarchitecture, called NetBurst, which was the company's first all-new design since the introduction of the...


Also see integer instructions added with Pentium 4

SSE2 SIMD floating-point instructions

Instruction Opcode Meaning
ADDPD xmm1, xmm2/m128 66 0F 58 /r Add Packed Double-Precision Floating-Point Values
ADDSD xmm1, xmm2/m64 F2 0F 58 /r Add Low Double-Precision Floating-Point Value
ANDNPD xmm1, xmm2/m128 66 0F 55 /r Bitwise Logical AND NOT
CMPPD xmm1, xmm2/m128, imm8 66 0F C2 /r ib Compare Packed Double-Precision Floating-Point Values
CMPSD xmm1, xmm2/m64, imm8 F2 0F C2 /r ib Compare Low Double-Precision Floating-Point Values

ADDPD, ADDSD, ANDNPD, ANDPD, CMPPD, CMPSD*, COMISD, CVTDQ2PD, CVTDQ2PS, CVTPD2DQ, CVTPD2PI, CVTPD2PS, CVTPI2PD, CVTPS2DQ, CVTPS2PD, CVTSD2SI, CVTSD2SS, CVTSI2SD, CVTSS2SD, CVTTPD2DQ, CVTTPD2PI, CVTTPS2DQ, CVTTSD2SI, DIVPD, DIVSD, MAXPD, MAXSD, MINPD, MINSD, MOVAPD
MOVAPD
In the x86 assembly programming language, MOVAPD is the name for a specific action performable by modern x86 processors with 2nd-generation Streaming SIMD Extensions . This action involves copying a pair of numbers to temporary space in the processor for use in other computations...

, MOVHPD
MOVHPD
In the x86 assembly programming language, MOVHPD is the name for a specific action performable by modern x86 processors with 2nd-generation Streaming SIMD Extensions...

, MOVLPD, MOVMSKPD, MOVSD*, MOVUPD, MULPD, MULSD, ORPD, SHUFPD, SQRTPD, SQRTSD, SUBPD, SUBSD, UCOMISD, UNPCKHPD, UNPCKLPD, XORPD

* CMPSD and MOVSD have the same name as the string
String (computer science)
In formal languages, which are used in mathematical logic and theoretical computer science, a string is a finite sequence of symbols that are chosen from a set or alphabet....

 instruction mnemonics
CMPSD (CMPS) and MOVSD (MOVS); however, the former refer to scalar double-precision
Double precision
In computing, double precision is a computer number format that occupies two adjacent storage locations in computer memory. A double-precision number, sometimes simply called a double, may be defined to be an integer, fixed point, or floating point .Modern computers with 32-bit storage locations...

 floating-points
Floating point
In computing, floating point describes a method of representing real numbers in a way that can support a wide range of values. Numbers are, in general, represented approximately to a fixed number of significant digits and scaled using an exponent. The base for the scaling is normally 2, 10 or 16...

 whereas the latters refer to doubleword
Integer (computer science)
In computer science, an integer is a datum of integral data type, a data type which represents some finite subset of the mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values....

 strings.

SSE2 SIMD integer instructions

MOVDQ2Q, MOVDQA, MOVDQU, MOVQ2DQ, PADDQ, PSUBQ, PMULUDQ, PSHUFHW, PSHUFLW, PSHUFD, PSLLDQ, PSRLDQ, PUNPCKHQDQ, PUNPCKLQDQ

SSE3
SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions , is the third iteration of the SSE instruction set for the IA-32 architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU...

 instructions

Added with Pentium 4 supporting SSE3
Also see integer and floating-point instructions added with Pentium 4 SSE3

SSE3 SIMD floating-point instructions

  • ADDSUBPD, ADDSUBPS (for Complex Arithmetic)
  • HADDPD, HADDPS, HSUBPD, HSUBPS (for Graphics)
  • MOVDDUP
    MOVDDUP
    In the x86 assembly programming language, MOVDDUP is the name for a specific action performable by modern x86 processors with 3rd-generation Streaming SIMD Extensions...

    , MOVSHDUP, MOVSLDUP (for Complex Arithmetic)

SSSE3
SSSE3
Supplemental Streaming SIMD Extensions 3 is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology.- History :...

 instructions

Added with Xeon
Xeon
The Xeon is a brand of multiprocessing- or multi-socket-capable x86 microprocessors from Intel Corporation targeted at the non-consumer server, workstation and embedded system markets.-Overview:...

 5100 series and initial Core 2
  • PSIGNW, PSIGND, PSIGNB
  • PSHUFB
  • PMULHRSW, PMADDUBSW
  • PHSUBW, PHSUBSW, PHSUBD
  • PHADDW, PHADDSW, PHADDD
  • PALIGNR
  • PABSW, PABSD, PABSB

SSE4.1

Added with Core 2 manufactured in 45nm
  • MPSADBW
  • PHMINPOSUW
  • PMULLD, PMULDQ
  • DPPS, DPPD
  • BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, PBLENDVB, PBLENDW
  • PMINSB, PMAXSB, PMINUW, PMAXUW, PMINUD, PMAXUD, PMINSD, PMAXSD
  • ROUNDPS, ROUNDSS, ROUNDPD, ROUNDSD
  • INSERTPS, PINSRB, PINSRD/PINSRQ, EXTRACTPS, PEXTRB, PEXTRW, PEXTRD/PEXTRQ
  • PMOVSXBW, PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXBQ, PMOVZXBQ, PMOVSXWD, PMOVZXWD, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ
  • PTEST
  • PCMPEQQ
  • PACKUSDW
  • MOVNTDQA

SSE4a

Added with Phenom
Phenom (processor)
Phenom is the 64-bit AMD desktop processor line based on the K10 microarchitecture, in what AMD calls family 10h processors, sometimes incorrectly called "K10h". Triple-core versions belong to the Phenom 8000 series and quad cores to the AMD Phenom X4 9000 series...

 processors

  • LZCNT, POPCNT (POPulation CouNT) - advanced bit manipulation
  • EXTRQ/INSERTQ
  • MOVNTSD/MOVNTSS

SSE4.2

Added with Nehalem processors
  • CRC32
  • PCMPESTRI
  • PCMPESTRM
  • PCMPISTRI
  • PCMPISTRM
  • PCMPGTQ

Intel AVX
Advanced Vector Extensions
Advanced Vector Extensions is an extension to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008 and first supported by Intel with the Westmere processor shipping in Q1 2011 and now by AMD with the Bulldozer processor shipping in Q3 2011.AVX...

 FMA instructions

Instruction Opcode Meaning Notes
VFMADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 69 /r /is4 Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 68 /r /is4 Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADDSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6B /r /is4 Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADDSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6A /r /is4 Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADDSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5D /r /is4 Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5C /r /is4 Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMSUBADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5F /r /is4 Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 5E /r /is4 Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFMSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6D /r /is4 Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6C /r /is4 Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUBSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6F /r /is4 Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUBSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 6E /r /is4 Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFNMADDPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 79 /r /is4 Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADDPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 78 /r /is4 Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADDSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7B /r /is4 Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADDSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7A /r /is4 Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMSUBPD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7D /r /is4 Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUBPS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7C /r /is4 Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUBSD xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7F /r /is4 Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUBSS xmm0, xmm1, xmm2, xmm3 C4E3 WvvvvL01 7E /r /is4 Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

Intel AES instructions

6 new instructions.
Instruction Description
AESENC Perform one round of an AES
Advanced Encryption Standard
Advanced Encryption Standard is a specification for the encryption of electronic data. It has been adopted by the U.S. government and is now used worldwide. It supersedes DES...

 encryption flow
AESENCLAST Perform the last round of an AES encryption flow
AESDEC Perform one round of an AES decryption flow
AESDECLAST Perform the last round of an AES decryption flow
AESKEYGENASSIST Assist in AES round key generation
AESIMC Assist in AES Inverse Mix Columns

Undocumented instructions

The x86 CPUs contain undocumented instructions
Illegal opcode
An Illegal Opcode, also called an Undocumented Instruction, is an instruction to a CPU that is not mentioned in any official documentation released by the CPU's designer or manufacturer, which nevertheless has an effect. Illegal opcodes were common on older CPUs designed during the 1970s, such as...

 which are implemented on the chips but not listed in some official documents. They can be found in various sources across the Internet, such as Ralf Brown's Interrupt List
Ralf Brown's Interrupt List
Ralf Brown's Interrupt List or RBIL is a comprehensive list of interrupts, calls, hooks, interfaces, data structures, memory and port addresses, and processor opcodes for x86 for machines from the very start of the PC era in 1981 up into the year 2000, most of it still applying to PCs today as well...

 and at http://sandpile.org.
Mnemonic Opcode Description Status
AAM imm8 D4 imm8 Divide AL by imm8, put the quotient in AH, and the remainder in AL Available beginning with 8086, documented since Pentium (earlier documentation lists no arguments)
AAD imm8 D5 imm8 Multiplication counterpart of AAM Available beginning with 8086, documented since Pentium (earlier documentation lists no arguments)
SALC D6 Set AL depending on the value of the Carry Flag (a 1-byte alternative of SBB AL, AL) Available beginning with 8086, but only documented since Pentium Pro.
HCF
F00f
The invalid operand with locked CMPXCHG8B instruction bug, commonly referred to as the Pentium F00F bug , is a design flaw in the majority of Intel Pentium, Pentium MMX, and Pentium OverDrive processors...

F0 0F C7 C8 Halt and Catch Fire - Causes the CPU to lock, forcing the user to hard-reboot. This was considered a bug by Intel and has been fixed in Pentium Pro step myB2 and later processors.
UD1 0F B9 Intentionally undefined instruction, but unlike UD2 this was not published
ICEBP F1 Single byte single-step exception / Invoke ICE
In-circuit emulator
An in-circuit emulator is a hardware device used to debug the software of an embedded system. It was historically in the form of bond-out processor which has many internal signals brought out for the purpose of debugging...

Available beginning with 80386, documented (as INT1) since Pentium Pro
LOADALL
LOADALL
LOADALL is the common name for two different, undocumented machine instructions of Intel 80286 and Intel 80386 processors, which allow access to areas normally outside of the IA-32 API scope, like descriptor cache registers...

0F 05 Loads All Registers from Memory Address 0x000800H Only available on 80286
Unknown mnemonic 0F 04 Exact purpose unknown, causes CPU hang. (the only way out is CPU reset)
In some implementations, emulated through BIOS
BIOS
In IBM PC compatible computers, the basic input/output system , also known as the System BIOS or ROM BIOS , is a de facto standard defining a firmware interface....

 as a halt
Halt
Halt can refer to:* Train station § Halt, a small train station, usually unstaffed, with few facilities and normally is a request stop* A sign, meaning attention* "Hungry, Angry, Lonely, Tired" in behavioral addiction recovery...

ing sequence.
Only available on 80286
LOADALLD 0F 07 Loads All Registers from Memory Address ES:EDI Only available on 80386
POP CS 0F Pop top of the stack into CS Segment register (causing a far jump) Only available on earliest models of 8086. Beginning with 80286 this opcode is used as a prefix for 2-Byte-Instructions
MOV CS,r/m 8E/1 Moves a value from register/memory into CS Segment register (causing a far jump) Only available on earliest models of 8086. Beginning with 80286 this opcode causes an invalid opcode exception
MOV ES,r/m 8E/4 Moves a value from register/memory into ES segment register Only available on earliest models of 8086. On 80286 this opcode causes an invalid opcode exception. Beginning with 80386 the value is moved into the FS segment register.
MOV CS,r/m 8E/5 Pop top of the stack into CS Segment register (?) Only available on earliest models of 8086. On 80286 this opcode causes an invalid opcode exception. Beginning with 80386 the value is moved into the GS segment register.
MOV SS,r/m 8E/6 Moves a value from register/memory into SS Segment register Only available on earliest models of 8086. Beginning with 80286 this opcode causes an invalid opcode exception
MOV DS,r/m 8E/7 Moves a value from register/memory into DS Segment register Only available on earliest models of 8086. Beginning with 80286 this opcode causes an invalid opcode exception

See also

  • CLMUL
    CLMUL instruction set
    Carry-less Multiplication is an extension to the x86 instruction set used by microprocessors from Intel and AMD which was proposed by Intel in March 2008 and made available in the Intel Westmere processors announced in early 2010. The purpose is to improve the speed of applications doing block...

  • XOP
    XOP instruction set
    The XOP instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction set for the Bulldozer processor core, which was released on October 12th, 2011....

  • CVT16
    CVT16 instruction set
    The CVT16 instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction set.CVT16 is a revision of part of the SSE5 instruction set proposal announced on August 30, 2007...

  • FMA
    FMA instruction set
    The FMA instruction set is the name of a future extension to the 128-bit SIMD instructions in the X86 microprocessor instruction set to perform fused multiply–add operations...

  • RdRand
    RdRand
    RdRand is an instruction for returning random numbers from an on-chip random number generator that will be available in Ivy Bridge processors. It is part of the Intel 64 instruction set architecture...

  • Larrabee extensions
  • Advanced Vector Extensions 2

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK