Light scattering
Encyclopedia
Light scattering is a form of scattering
Scattering
Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...

 in which light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 is the form of propagating energy which is scattered. Light scattering can be thought of as the deflection of a ray
Ray (optics)
In optics, a ray is an idealized narrow beam of light. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very...

 from a straight path, for example by irregularities in the propagation medium, particles
Light scattering by particles
Light scattering by particles is the process by which small particles such as ice crystals, dust, planetary dust, and blood cells cause observable phenomena such as rainbows, the color of the sky, and halos....

, or in the interface between two media. Deviations from the law of reflection due to irregularities on a surface are also usually considered to be a form of scattering. When these irregularities are considered to be random and dense enough that their individual effects average out, this kind of scattered reflection is commonly referred to as diffuse reflection
Diffuse reflection
Diffuse reflection is the reflection of light from a surface such that an incident ray is reflected at many angles rather than at just one angle as in the case of specular reflection...

.

Most objects that one sees are visible due to light scattering from their surfaces. Indeed, this is our primary mechanism of physical observation.
Scattering of light depends on the wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 or frequency
Frequency
Frequency is the number of occurrences of a repeating event per unit time. It is also referred to as temporal frequency.The period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency...

 of the light being scattered. Since visible light has wavelength on the order of a micron
Micrometre
A micrometer , is by definition 1×10-6 of a meter .In plain English, it means one-millionth of a meter . Its unit symbol in the International System of Units is μm...

, objects much smaller than this cannot be seen, even with the aid of a microscope. Colloidal particles as small as 1 µm have been observed directly in aqueous suspension.
The transmission of various frequencies of light is essential for applications ranging from window glass to fiber optic transmission cables
Optical fiber cable
An optical fiber cable is a cable containing one or more optical fibers. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable will be deployed....

 and infrared
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

 (IR) heat-seeking missile detection systems. Light propagating through an optical system can be attenuated
Attenuation
In physics, attenuation is the gradual loss in intensity of any kind of flux through a medium. For instance, sunlight is attenuated by dark glasses, X-rays are attenuated by lead, and light and sound are attenuated by water.In electrical engineering and telecommunications, attenuation affects the...

 by absorption
Absorption (electromagnetic radiation)
In physics, absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter, typically the electrons of an atom. Thus, the electromagnetic energy is transformed to other forms of energy for example, to heat. The absorption of light during wave propagation is...

, reflection
Reflection (physics)
Reflection is the change in direction of a wavefront at an interface between two differentmedia so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves...

 and scattering.

Introduction

The interaction of light with matter can shed light on important information about the structure and dynamics of the material being examined. If the scattering centers are in motion, then the scattered radiation is Doppler shifted. An analysis of the spectrum of scattered light can thus yield information regarding the motion of the scattering center. Periodicity or structural repetition in the scattering medium will cause interference in the spectrum of scattered light. Thus, a study of the scattered light intensity as a function of scattering angle gives information about the structure, spatial configuration, or morphology of the scattering medium. With regards to light scattering in liquid
Liquid
Liquid is one of the three classical states of matter . Like a gas, a liquid is able to flow and take the shape of a container. Some liquids resist compression, while others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly...

s and solid
Solid
Solid is one of the three classical states of matter . It is characterized by structural rigidity and resistance to changes of shape or volume. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire volume available to it like a...

s, primary material considerations include:
  • Crystalline structure: How close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit the long-range order evidenced in crystalline solids.

  • Glassy structure: Scattering centers include fluctuations in density and/or composition.

  • Microstructure: Scattering centers include internal surfaces in liquids due largely to density fluctuations, and microstructural defects in solids such as grains, grain boundaries, and microscopic pores.


In the process of light scattering, the most critical factor is the length scale of any or all of these structural features relative to the wavelength of the light being scattered.

An extensive review of light scattering in fluids has covered most of the mechanisms which contribute to the spectrum of scattered light in liquids, including density, anisotropy, and concentration fluctuations. Thus, the study of light scattering by thermally driven density fluctuations (or Brillouin scattering
Brillouin scattering
Brillouin scattering, named after Léon Brillouin, occurs when light in a medium interacts with time dependent optical density variations and changes its energy and path. The density variations may be due to acoustic modes, such as phonons, magnetic modes, such as magnons, or temperature gradients...

) has been utilized successfully for the measurement of structural relaxation and viscoelasticity
Viscoelasticity
Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like honey, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain instantaneously when stretched and just...

 in liquids, as well as phase separation, vitrification
Glass transition
The liquid-glass transition is the reversible transition in amorphous materials from a hard and relatively brittle state into a molten or rubber-like state. An amorphous solid that exhibits a glass transition is called a glass...

 and compressibility in glass
Glass
Glass is an amorphous solid material. Glasses are typically brittle and optically transparent.The most familiar type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, composed of about 75% silica plus Na2O, CaO, and several minor additives...

es. In addition, the introduction of dynamic light scattering
Dynamic light scattering
thumb|right|350px|Hypothetical Dynamic light scattering of two samples: Larger particles on the top and smaller particle on the bottomDynamic light scattering is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers...

 and photon correlation spectroscopy has made possible the measurement of the time dependence of spatial correlations in liquids and glass
Glass
Glass is an amorphous solid material. Glasses are typically brittle and optically transparent.The most familiar type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, composed of about 75% silica plus Na2O, CaO, and several minor additives...

es in the relaxation time gap between 10−6 and 10−2 s in addition to even shorter time scales – or faster relaxation events. It has therefore become quite clear that light scattering is an extremely useful tool for monitoring the dynamics of structural relaxation in glasses on various temporal and spatial scales and therefore provides an ideal tool for quantifying the capacity of various glass compositions for guided light wave transmission well into the far infrared portions of the electromagnetic spectrum.
  • Note: Light scattering in an ideal defect-free crystalline (non-metallic) solid which provides no scattering centers for incoming lightwaves will be due primarily to any effects of anharmonicity within the ordered lattice. Lightwave transmission will be highly directional due to the typical anisotropy
    Anisotropy
    Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies identical properties in all directions. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties An example of anisotropy is the light...

     of crystalline substances, which includes their symmetry group
    Symmetry group
    The symmetry group of an object is the group of all isometries under which it is invariant with composition as the operation...

     and Bravais lattice. For example, the seven different crystalline forms of quartz
    Quartz
    Quartz is the second-most-abundant mineral in the Earth's continental crust, after feldspar. It is made up of a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall formula SiO2. There are many different varieties of quartz,...

     silica (silicon dioxide
    Silicon dioxide
    The chemical compound silicon dioxide, also known as silica , is an oxide of silicon with the chemical formula '. It has been known for its hardness since antiquity...

    , SiO2) are all clear, transparent materials.

Types of scattering

  • Rayleigh scattering
    Rayleigh scattering
    Rayleigh scattering, named after the British physicist Lord Rayleigh, is the elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the light. The particles may be individual atoms or molecules. It can occur when light travels through...

     is the elastic
    Elasticity (physics)
    In physics, elasticity is the physical property of a material that returns to its original shape after the stress that made it deform or distort is removed. The relative amount of deformation is called the strain....

     scattering of light by molecules and particulate matter much smaller than the wavelength of the incident light. It occurs when light penetrates gaseous, liquid, or solid phases of matter. Rayleigh scattering intensity has a very strong dependence on the size of the particles (it is proportional the sixth power of their diameter). It is inversely proportional to the fourth power of the wavelength of light, which means that the shorter wavelength in visible white light (violet and blue) are scattered stronger than the longer wavelengths toward the red end of the visible spectrum. This type of scattering is therefore responsible for the blue color of the sky during the day. and the orange colors during sunrise and sunset. Rayleigh scattering is the main cause of signal loss in optical fiber
    Optical fiber
    An optical fiber is a flexible, transparent fiber made of a pure glass not much wider than a human hair. It functions as a waveguide, or "light pipe", to transmit light between the two ends of the fiber. The field of applied science and engineering concerned with the design and application of...

    s.

  • Mie scattering
    Mie theory
    The Mie solution to Maxwell's equations describes the scattering of electromagnetic radiation by a sphere...

     is a broad class of scattering of light by spherical particles of any diameter. The scattering intensity is generally not strongly dependent on the wavelength, but is sensitive to the particle size. Mie scattering coincides with Rayleigh scattering in the special case where the diameter of the particles is much smaller than the wavelength of the light; in this limit, however, the shape of the particles no longer matters. Mie scattering intensity for large particles is proportional to the square of the particle diameter.

  • Tyndall scattering is similar to Mie scattering without the restriction to spherical geometry of the particles. It is particularly applicable to colloid
    Colloid
    A colloid is a substance microscopically dispersed evenly throughout another substance.A colloidal system consists of two separate phases: a dispersed phase and a continuous phase . A colloidal system may be solid, liquid, or gaseous.Many familiar substances are colloids, as shown in the chart below...

    al mixtures and suspensions
    Suspension (chemistry)
    In chemistry, a suspension is a heterogeneous fluid containing solid particles that are sufficiently large for sedimentation. Usually they must be larger than 1 micrometer. The internal phase is dispersed throughout the external phase through mechanical agitation, with the use of certain...

    .

  • Brillouin scattering
    Brillouin scattering
    Brillouin scattering, named after Léon Brillouin, occurs when light in a medium interacts with time dependent optical density variations and changes its energy and path. The density variations may be due to acoustic modes, such as phonons, magnetic modes, such as magnons, or temperature gradients...

     occurs from the interaction of photons with acoustic phonon
    Phonon
    In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, such as solids and some liquids...

    s in solids, which are vibrational quanta of lattice vibrations, or with elastic waves in liquids. The scattering is inelastic, meaning it is shifted in energy from the Rayleigh line frequency by an amount that corresponds to the energy of the elastic wave or phonon, and it occurs on the higher and lower energy side of the Rayleigh line, which may be associated with the creation and annihilation of a phonon. The light wave is considered to be scattered by the density maximum or amplitude of the acoustic phonon, in the same manner that X-rays are scattered by the crystal planes in a solid. In solids, the role of the crystal planes in this process is analogous to the planes of the sound waves or density fluctuations. Brillouin scattering measurements require the use of a high-contrast Fabry–Pérot interferometer to resolve the Brillouin lines from the elastic scattering, because the energy shifts are very small (< 100 cm−1) and very weak in intensity. Brillouin scattering measurements yield the sound velocities in a material, which may be used to calculate the elastic constants of the sample.

  • Raman scattering
    Raman scattering
    Raman scattering or the Raman effect is the inelastic scattering of a photon. It was discovered by Sir Chandrasekhara Venkata Raman and Kariamanickam Srinivasa Krishnan in liquids, and by Grigory Landsberg and Leonid Mandelstam in crystals....

     is another form of inelastic light scattering, but instead of scattering from acoustic phonons, as in Brillouin scattering, the light interacts with optical phonons, which are predominantly intra-molecular vibrations and rotations with energies larger than acoustic phonons. Raman scattering may therefore be used to determine chemical composition and molecular structure. Since most Raman lines are stronger than Brillouin lines, and have higher energies, standard spectrometers using scanning monochromator
    Monochromator
    A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input...

    s may be used to measure them. Raman spectrometers are standard equipment in many chemical laboratories.

Static and dynamic scattering

A common dichotomy in light scattering terminology is static light scattering
Static light scattering
Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein. Measurement of the scattering intensity at many angles allows calculation of the root mean square...

 versus dynamic light scattering
Dynamic light scattering
thumb|right|350px|Hypothetical Dynamic light scattering of two samples: Larger particles on the top and smaller particle on the bottomDynamic light scattering is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers...

. The chief distinction is whether the scattering is observed to be changing over time (dynamic) or constant over the observation (static). This terminology is especially commonly encountered in the field of polymer chemistry, though it can obviously be applied to a broad range of situations.

Critical phenomena

Density fluctuations are responsible for the phenomenon of critical opalescence
Critical opalescence
Critical opalescence is a phenomenon which arises in the region of a continuous, or second-order, phase transition. Originally reported by Thomas Andrews in 1869 for the liquid-gas transition in carbon dioxide, many other examples have been discovered since. The phenomenon is most commonly...

, which arises in the region of a continuous, or second-order, phase transition. The phenomenon is most commonly demonstrated in binary fluid mixtures, such as methanol
Methanol
Methanol, also known as methyl alcohol, wood alcohol, wood naphtha or wood spirits, is a chemical with the formula CH3OH . It is the simplest alcohol, and is a light, volatile, colorless, flammable liquid with a distinctive odor very similar to, but slightly sweeter than, ethanol...

 and cyclohexane
Cyclohexane
Cyclohexane is a cycloalkane with the molecular formula C6H12. Cyclohexane is used as a nonpolar solvent for the chemical industry, and also as a raw material for the industrial production of adipic acid and caprolactam, both of which being intermediates used in the production of nylon...

. As the critical point is approached the sizes of the gas and liquid region begin to fluctuate over increasingly large length scales. As the length scale of the density fluctuations approaches the wavelength of light, the light is scattered and causes the normally transparent fluid to appear cloudy.

Further reading

  • P. W. Barber, S. S. Hill: Light scattering by particles: Computational methods. Singapore, World Scientific, 1990.
  • G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Leipzig, Ann. Phys. 330, 377–445 (1908)http://diogenes.iwt.uni-bremen.de/vt/laser/papers/RAE-LT1873-1976-Mie-1908-translation.pdf
  • M. Mishchenko, L. Travis, A. Lacis: Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, 2002.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK