Monochromator

Monochromator

Discussion
Ask a question about 'Monochromator'
Start a new discussion about 'Monochromator'
Answer questions from other users
Full Discussion Forum
 
Encyclopedia
A monochromator is an optical
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...

 device that transmits a mechanically selectable narrow band of wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

s of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 or other radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...

 chosen from a wider range of wavelengths available at the input. The name is from the Greek
Greek language
Greek is an independent branch of the Indo-European family of languages. Native to the southern Balkans, it has the longest documented history of any Indo-European language, spanning 34 centuries of written records. Its writing system has been the Greek alphabet for the majority of its history;...

 roots mono-, single, and chroma, colour, and the Latin
Latin
Latin is an Italic language originally spoken in Latium and Ancient Rome. It, along with most European languages, is a descendant of the ancient Proto-Indo-European language. Although it is considered a dead language, a number of scholars and members of the Christian clergy speak it fluently, and...

 suffix -ator, denoting an agent.

Uses


A device that can produce monochromatic light has many uses in science and in optics because many optical characteristics of a material are dependent on color. Although there are a number of useful ways to produce pure colors, there are not so many other ways to easily select any pure color in a wide range. See below for a discussion of some of the uses of monochromators.

In hard X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

 and neutron
Neutron radiation
Neutron radiation is a kind of ionizing radiation which consists of free neutrons. A result of nuclear fission or nuclear fusion, it consists of the release of free neutrons from atoms, and these free neutrons react with nuclei of other atoms to form new isotopes, which, in turn, may produce...

 optics, crystal monochromator
Crystal monochromator
A crystal monochromator is a device in neutron and X-ray optics to select a defined wavelength of the radiation for further purpose on a dedicated instrument or beamline. It operates through the diffraction process according to Bragg's law....

s are used to define wave conditions on the instruments.

Techniques


A monochromator can use either the phenomenon of optical dispersion in a prism
Prism (optics)
In optics, a prism is a transparent optical element with flat, polished surfaces that refract light. The exact angles between the surfaces depend on the application. The traditional geometrical shape is that of a triangular prism with a triangular base and rectangular sides, and in colloquial use...

, or that of diffraction
Diffraction
Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

 using a diffraction grating
Diffraction grating
In optics, a diffraction grating is an optical component with a periodic structure, which splits and diffracts light into several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and the wavelength of the light so that the grating acts as...

, to spatially separate the colors of light. It usually has a mechanism for directing the selected color to an exit slit. Usually the grating or the prism is used in a reflective mode. A reflective prism is made by making a right triangle prism (typically, half of an equilateral prism) with one side mirrored. The light enters through the hypotenuse face and is reflected back through it, being refracted twice at the same surface. The total refraction, and the total dispersion, is the same as would occur if an equilateral prism were used in transmission mode.

Collimation


The dispersion or diffraction is only controllable if the light is collimated, that is if all the rays of light are parallel, or practically so. A source, like the sun, which is very far away, provides collimated light. Newton
Isaac Newton
Sir Isaac Newton PRS was an English physicist, mathematician, astronomer, natural philosopher, alchemist, and theologian, who has been "considered by many to be the greatest and most influential scientist who ever lived."...

 used sunlight in his famous experiments. In a practical monochromator however, the light source is close by, and an optical system in the monochromator converts the diverging light of the source to collimated light. Although some monochromator designs do use focusing gratings that do not need separate collimators, most use collimating mirrors. Reflective optics are preferred because they do not introduce dispersive effects of their own.

Czerny-Turner monochromator



In the common Czerny-Turner design, the broad band illumination source (A) is aimed at an entrance slit (B). The amount of light energy available for use depends on the intensity of the source in the space defined by the slit (width * height) and the acceptance angle of the optical system. The slit is placed at the effective focus of a curved mirror (the collimator
Collimated light
Collimated light is light whose rays are parallel, and therefore will spread slowly as it propagates. The word is related to "collinear" and implies light that does not disperse with distance , or that will disperse minimally...

, C) so that the light from the slit reflected from the mirror is collimated (focused at infinity). The collimated light is refracted
Refraction
Refraction is the change in direction of a wave due to a change in its speed. It is essentially a surface phenomenon . The phenomenon is mainly in governance to the law of conservation of energy. The proper explanation would be that due to change of medium, the phase velocity of the wave is changed...

 by the prism or diffracted
Diffraction
Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

 from the grating
Diffraction grating
In optics, a diffraction grating is an optical component with a periodic structure, which splits and diffracts light into several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and the wavelength of the light so that the grating acts as...

 (D) and then is collected by another mirror (E) which refocuses the light, now dispersed, on the exit slit (F). At the exit slit, the colors of the light are spread out (in the visible this shows the colors of the rainbow). Because each color arrives at a separate point in the exit slit plane, there are a series of images of the entrance slit focused on the plane. Because the entrance slit is finite in width, parts of nearby images overlap. The light leaving the exit slit (G) contains the entire image of the entrance slit of the selected color plus parts of the entrance slit images of nearby colors. A rotation of the dispersing element causes the band of colors to move relative to the exit slit, so that the desired entrance slit image is centered on the exit slit. The range of colors leaving the exit slit is a function of the width of the slits. The entrance and exit slit widths are adjusted together.

Stray light


The ideal transfer function of such a monochromator is a triangular shape. The peak of the triangle is at the nominal wavelength selected. The intensity of the nearby colors then decreases linearly on either side of this peak until some cutoff value is reached, where the intensity stops decreasing. This is called the stray light
Stray light
Stray light is light in an optical system, which was not intended in the design. The light may be from the intended source, but follow paths other than intended, or it may be from a source other than the intended source...

 level. The cutoff level is typically about one thousandth of the peak value, or 0.1%.

Spectral bandwidth


A typical spectral bandwidth might be one nanometer, which is defined as the width of the triangle at the points where the light has reached half the maximum value. Thus spectral bandwidth is defined as Full Width at Half Maximum
Full width at half maximum
Full width at half maximum is an expression of the extent of a function, given by the difference between the two extreme values of the independent variable at which the dependent variable is equal to half of its maximum value....

 abbreviated FWHM.

Dispersion


The dispersion of a monochromator is characterized as the width of the band of colors per unit of slit width, 1 nm of spectrum per mm of slit width for instance. This factor is constant for a grating, but varies with wavelength for a prism. If a scanning prism monochromator is used in a constant bandwidth mode, the slit width must change as the wavelength changes.

Wavelength range


A monochromator's adjustment range might cover the visible spectrum and some part of both or either of the nearby ultraviolet
Ultraviolet
Ultraviolet light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, in the range 10 nm to 400 nm, and energies from 3 eV to 124 eV...

 (UV) and infrared
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

 (IR) spectra, although monochromators are built for a great variety of optical ranges, and to a great many designs.

Double monochromators


It is common for two monochromators to be connected in series, with their mechanical systems operating in tandem so that they both select the same color. This arrangement is not intended to improve the narrowness of the spectrum, but rather to lower the cutoff level. A double monochromator may have a cutoff about one millionth of the peak value, the product of the two cutoffs of the individual sections. The intensity of the light of other colors in the exit beam is referred to as the stray light level and is the most critical specification of a monochromator for many uses. Achieving low stray light is a large part of the art of making a practical monochromator.

Diffraction gratings and blazed gratings


When a diffraction grating
Diffraction grating
In optics, a diffraction grating is an optical component with a periodic structure, which splits and diffracts light into several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and the wavelength of the light so that the grating acts as...

 is used, care must be taken in the design of broadband monochromators because the diffraction pattern has overlapping orders. Sometimes extra, broadband filters are inserted in the optical path to limit the width of the diffraction orders so they do not overlap. Sometimes this is done by using a prism in one of the monochromators of a dual monochromator design.

The original high-resolution diffraction gratings were ruled. The construction of high-quality ruling engines was a large undertaking, and good gratings were very expensive. The slope of the triangular groove in a ruled grating is typically adjusted to enhance the brightness of a particular diffraction order. This is called blazing a grating. Ruled gratings have imperfections that produce faint "ghost" diffraction orders that may raise the stray light level of a monochromator. A later photolithographic technique allows gratings to be created from a holographic interference pattern. Holographic grating
Holographic grating
A holographic grating is a type of diffraction grating formed by an interference-fringe field of two laser beams whose standing-wave pattern is exposed to a polished substrate coated with photoresist. Processing of the exposed medium results in a pattern of straight lines with a sinusoidal cross...

s have sinusoidal grooves and so are not as bright, but have lower scattered light levels than blazed gratings. Almost all the gratings actually used in monochromators are carefully made replicas of ruled or holographic master gratings.

Prisms


Prisms have higher dispersion in the UV region. Prism monochromators are favored in some instruments that are principally designed to work in the far UV region. Most monochromators use gratings though. Some monochromators have several gratings that can be selected for use in different spectral regions. A double monochromator made by placing a prism and a grating monochromator in series typically does not need additional bandpass filters to isolate a single grating order.

Focal length


The narrowness of the band of colors that a monochromator can generate is related to the focal length of the monochromator collimators. Using a longer focal length optical system also unfortunately decreases the amount of light that can be accepted from the source. Very high resolution monochromators might have a focal length of 2 meters. Building such monochromators requires exceptional attention to mechanical and thermal stability. For many applications a monochromator of about 0.4 meter focal length is considered to have excellent resolution. Many monochromators have a focal length less than 0.1 meter.

Slit Height


The most common optical system uses spherical collimators and thus contains optical aberrations that curve the field where the slit images come to focus, so that slits are sometimes curved instead of simply straight, to approximate the curvature of the image. This allows taller slits to be used, gathering more light, while still achieving high spectral resolution. Some designs take another approach and use toroidal collimating mirrors to correct the curvature instead, allowing higher straight slits without sacrificing resolution.

Wavelength vs Energy


Monochromators are often calibrated in units of wavelength. Uniform rotation of a grating produces a sinusoidal change in wavelength, which is approximately linear for small grating angles, so such an instrument is easy to build. Many of the underlying physical phenomena being studied are linear in energy though, and since wavelength and energy have a reciprocal relationship, spectral patterns that are simple and predictable when plotted as a function of energy are distorted when plotted as a function of wavelength. Some monochromators are calibrated in units of reciprocal centimeters
Wavenumber
In the physical sciences, the wavenumber is a property of a wave, its spatial frequency, that is proportional to the reciprocal of the wavelength. It is also the magnitude of the wave vector...

 or some other energy units, but the scale may not be linear.

Dynamic Range


A spectrophotometer built with a high quality double monochromator can produce light of sufficient purity and intensity that the instrument can measure a narrow band of optical attenuation of about one million fold (6 AU).

Applications


Monochromators are used in many optical measuring instruments and in other applications where tunable monochromatic light is wanted. Sometimes the monochromatic light is directed at a sample and the reflected or transmitted light is measured. Sometimes white light is directed at a sample and the monochromator is used to analyze the reflected or transmitted light. Two monochromators are used in many fluorometer
Fluorometer
A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. These parameters are used to identify the presence and the amount of specific molecules in a medium...

s; one monochromator is used to select the excitation wavelength and a second monochromator is used to analyze the emitted light.

An automatic scanning spectrometer includes a mechanism to change the wavelength selected by the monochromator and to record the resulting changes in the measured quantity as a function of the wavelength.

If an imaging device replaces the exit slit, the result is the basic configuration of a spectrograph
Spectrograph
A spectrograph is an instrument that separates an incoming wave into a frequency spectrum. There are several kinds of machines referred to as spectrographs, depending on the precise nature of the waves...

. This configuration allows the simultaneous analysis of the intensities of a wide band of colors. Photographic film or an array of photodetectors can be used, for instance to collect the light. Such an instrument can record a spectral function without mechanical scanning, although there may be tradeoffs in terms of resolution or sensitivity for instance.

An absorption spectrophotometer measures the absorption of light by a sample as a function of wavelength. Sometimes the result is expressed as percent transmission and sometimes it is expressed as the inverse logarithm of the transmission. The Beer-Lambert law
Beer-Lambert law
In optics, the Beer–Lambert law, also known as Beer's law or the Lambert–Beer law or the Beer–Lambert–Bouguer law relates the absorption of light to the properties of the material through which the light is travelling.-Equations:The law states that there is a logarithmic dependence between the...

 relates the absorption of light to the concentration of the light-absorbing material, the optical path length, and an intrinsic property of the material called molar absorptivity. According to this relation the decrease in intensity is exponential in concentration and path length. The decrease is linear in these quantities when the inverse logarithm of transmission is used. The old nomenclature for this value was Optical Density (OD), current nomenclature is Absorbance Units (AU). One AU is a tenfold reduction in light intensity. Six AU is a millionfold reduction.

Absorption spectrophotometers often contain a monochromator to supply light to the sample. Some absorption spectrophotometers have automatic spectral analysis capabilities.

Absorption spectrophotometers have many everyday uses in chemistry, biochemistry, and biology. For example, they are used to measure the concentration or change in concentration of many substances that absorb light. Critical characteristics of many biological materials, many enzymes for instance, are measured by starting a chemical reaction that produces a color change that depends on the presence or activity of the material being studied. Optical thermometers have been created by calibrating the change in absorbance of a material against temperature. There are many other examples.

Spectrophotometers are used to measure the specular reflectance
Specular reflection
Specular reflection is the mirror-like reflection of light from a surface, in which light from a single incoming direction is reflected into a single outgoing direction...

 of mirrors and the diffuse reflectance
Diffuse reflection
Diffuse reflection is the reflection of light from a surface such that an incident ray is reflected at many angles rather than at just one angle as in the case of specular reflection...

 of colored objects. They are used to characterize the performance of sunglasses, laser protective glasses, and other optical filters
Filter (optics)
Optical filters are devices which selectively transmit light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which are either dyed in the mass or have interference coatings....

. There are many other examples.

In the UV, visible and near IR, absorbance and reflectance spectrophotometers usually illuminate the sample with monochromatic light. In the corresponding IR instruments, the monochromator is usually used to analyze the light coming from the sample.

Monochromators are also used in optical instruments that measure other phenomena besides simple absorption or reflection, wherever the color of the light is a significant variable. Circular dichroism
Circular dichroism
Circular dichroism refers to the differential absorption of left and right circularly polarized light. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. It is exhibited in the absorption bands of optically active chiral...

 spectrometers contain a monochromator, for example.

Lasers produce light which is much more monochromatic than the optical monochromators discussed here, but only some lasers are easily tunable, and these lasers are not as simple to use.

Monochromatic light allows for the measurement of the Quantum Efficiency (QE) of an imaging device (e.g. CCD or CMOS imager). Light from the exit slit is passed either through diffusers or an integrating sphere on to the imaging device while a calibrated detector simultaneously measures the light. Coordination of the imager, calibrated detector, and monochromator allows one to calculate the carriers (electrons or holes) generated for a photon of a given wavelength, QE.

See also

  • Atomic absorption
    Atomic absorption spectroscopy
    Atomic absorption spectroscopy is a spectroanalytical procedure for the qualitative and quantitative determination of chemical elements employing the absorption of optical radiation by free atoms in the gaseous state. In analytical chemistry the technique is used for determining the concentration...

     spectrometers use light from hollow cathode lamp
    Hollow cathode lamp
    A hollow-cathode lamp is type of lamp used in physics and chemistry as a spectral line source and as a frequency tuner for light sources such as lasers....

    s that emit light generated by atoms of a specific element, for instance iron or lead or calcium. The available colors are fixed, but are very monochromatic and are excellent for measuring the concentration of specific elements in a sample. These instruments behave as if they contained a very high quality monochromator, but their use is limited to analyzing the elements they are equipped for.
  • A major IR measurement technique, Fourier Transform
    Fourier transform spectroscopy
    Fourier transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the electromagnetic radiation or other type of radiation....

     IR, or FTIR, does not use a monochromator. Instead, the measurement is performed in the time domain, using the field autocorrelation
    Optical autocorrelation
    In optics, various autocorrelation functions can be experimentally realized. The field autocorrelation may be used to calculate the spectrum of a source of light, while the intensity autocorrelation and the interferometric autocorrelation are commonly used to estimate the duration of ultrashort...

     technique.
  • Polychromator
    Polychromator
    A polychromator is an optical device that is used to disperse light into different directions to isolate parts of the spectrum of the light. A prism or diffraction grating can be used to disperse the light. Unlike a monochromator, it outputs multiple beams over a range of wavelengths simultaneously...

  • Wien filter
    Wien filter
    A Wien filter is a device consisting of perpendicular electric and magnetic fields that can be used as a velocity filter for charged particles, for example in electron microscopes and spectrometers. It is named for Wilhelm Wien who developed it in 1898 for the study of anode rays. It can be...

    - a technique for producing "monochromatic" electron beams, where all the electrons have nearly the same energy

External links