Multiplication table

# Multiplication table

Discussion

Encyclopedia
In mathematics
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

, a multiplication table (sometimes, less formally, a times table) is a mathematical table
Mathematical table
Before calculators were cheap and plentiful, people would use mathematical tables —lists of numbers showing the results of calculation with varying arguments— to simplify and drastically speed up computation...

used to define a multiplication operation
Binary operation
In mathematics, a binary operation is a calculation involving two operands, in other words, an operation whose arity is two. Examples include the familiar arithmetic operations of addition, subtraction, multiplication and division....

for an algebraic system.

The decimal
Decimal
The decimal numeral system has ten as its base. It is the numerical base most widely used by modern civilizations....

multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with our base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.

In his 1820 book The Philosophy of Arithmetic, mathematician John Leslie
John Leslie (physicist)
Sir John Leslie was a Scottish mathematician and physicist best remembered for his research into heat.Leslie gave the first modern account of capillary action in 1802 and froze water using an air-pump in 1810, the first artificial production of ice.In 1804, he experimented with radiant heat using...

published a multiplication table up to 99 × 99, which allows numbers to be multiplied in pairs of digits at a time. Leslie also recommended that young pupils memorize the multiplication table up to 25 × 25.
 × 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 7 14 21 28 35 42 48 56 63 70 77 84 91 98 105 112 119 126 133 140 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

The table is sometimes attributed to Pythagoras
Pythagoras
Pythagoras of Samos was an Ionian Greek philosopher, mathematician, and founder of the religious movement called Pythagoreanism. Most of the information about Pythagoras was written down centuries after he lived, so very little reliable information is known about him...

. It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.

In 493 A.D., Victorius of Aquitaine
Victorius of Aquitaine
Victorius of Aquitaine, a countryman of Prosper of Aquitaine and also working in Rome, produced in 457 an Easter Cycle, which was based on the consular list provided by Prosper's Chronicle. This dependency caused scholars to think that Prosper had been working on his own Easter Annals for quite...

wrote a 98-column multiplication table which gave (in Roman numerals
Roman numerals
The numeral system of ancient Rome, or Roman numerals, uses combinations of letters from the Latin alphabet to signify values. The numbers 1 to 10 can be expressed in Roman numerals as:...

) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144" (Maher & Makowski 2001, p.383)

The traditional rote learning of multiplication was based on memorization of columns in the table, in a form like
This form of writing the multiplication table in columns with complete number sentences is still used in some countries instead of the modern grid above.

## Patterns in the tables

There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:

→ →
1 2 3 2 4
↑ 4 5 6 ↓ ↑ ↓
7 8 9 6 8
← ←
0 0
Fig. 1 Fig. 2

For example, to memorize all the multiples of 7:
1. Look at the 7 in the first picture and follow the arrow.
2. The next number in the direction of the arrow is 4. So think of the next number after 7 that ends with 4, which is 14.
3. The next number in the direction of the arrow is 1. So think of the next number after 14 that ends with 1, which is 21.
4. After coming to the top of this column, start with the bottom of the next column, and travel in the same direction. The number is 8. So think of the next number after 21 that ends with 8, which is 28.
5. Proceed in the same way until the last number, 3, which corresponds to 63.
6. Next, use the 0 at the bottom. It corresponds to 70.
7. Then, start again with the 7. This time it will correspond to 77.
8. Continue like this.

Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 1 to 9, except 5.

## In abstract algebra

Multiplication tables can also define binary operations on group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...

s, field
Field (mathematics)
In abstract algebra, a field is a commutative ring whose nonzero elements form a group under multiplication. As such it is an algebraic structure with notions of addition, subtraction, multiplication, and division, satisfying certain axioms...

s, ring
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition and a semigroup under multiplication such that multiplication distributes over addition...

s, and other algebraic systems
Abstract algebra
Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras...

. In such contexts they can be called Cayley table
Cayley table
A Cayley table, after the 19th century British mathematician Arthur Cayley, describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table...

s. For an example, see octonion
Octonion
In mathematics, the octonions are a normed division algebra over the real numbers, usually represented by the capital letter O, using boldface O or blackboard bold \mathbb O. There are only four such algebras, the other three being the real numbers R, the complex numbers C, and the quaternions H...

.

## Standards-based mathematics reform in the USA

In 1989, the National Council of Teachers of Mathematics
National Council of Teachers of Mathematics
The National Council of Teachers of Mathematics was founded in 1920. It has grown to be the world's largest organization concerned with mathematics education, having close to 100,000 members across the USA and Canada, and internationally....

(NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, and which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such as Investigations in Numbers, Data, and Space
Investigations in Numbers, Data, and Space
Investigations in Number, Data, and Space is a K-5 mathematics curriculum, developed at in Cambridge, Massachusetts, USA. The curriculum is often referred to as Investigations or simply TERC. Patterned after the NCTM standards for mathematics, it is among the most widely used of the new reform...

(widely known as TERC
TERC
TERC may refer to:*Telomerase RNA component, a human gene.*The developers of the Investigations in Numbers, Data, and Space mathematics curriculum.*Technical Education Research Centers*CSIRO Tropical Ecosystems Research Centre...

after its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006 Focal Points that basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method.