Monopulse radar
Encyclopedia
Monopulse radar is an adaptation of conical scanning
Conical scanning
Conical scanning is a system used in early radar units to improve their accuracy, as well as making it easier to steer the antenna properly to point at a target...

 radar which sends additional information in the radar
Radar
Radar is an object-detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio...

 signal in order to avoid problems caused by rapid changes in signal strength
Signal strength
In telecommunications, particularly in radio, signal strength refers to the magnitude of the electric field at a reference point that is a significant distance from the transmitting antenna. It may also be referred to as received signal level or field strength. Typically, it is expressed in...

. The system also makes jamming
Electronic warfare
Electronic warfare refers to any action involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy assaults via the spectrum. The purpose of electronic warfare is to deny the opponent the advantage of, and ensure friendly...

 more difficult. Most radars designed since the 1960s are monopulse systems.

Conical scan

Conical scanning
Conical scanning
Conical scanning is a system used in early radar units to improve their accuracy, as well as making it easier to steer the antenna properly to point at a target...

is not considered to be a form of monopulse radar, but the following summary provides background that can aid understanding.

Conical scan systems send out a signal slightly to one side of the antenna's boresight
Boresight
Boresight is a term used to describe crude adjustments made to an optical firearm sight, or iron sights, to align the firearm barrel and sights. This method is usually used to pre-align the sights, which makes zeroing much faster.Traditional boresighting, as the name suggests involves removing...

, and then rotating the feed horn to make the lobe rotate around the boresight line. A target centered on the boresight is always slightly illuminated by the lobe, and provides a strong return. If the target is to one side, it will be illuminated only when the lobe is pointed in that general direction, resulting in a weaker signal overall (or a flashing one if the rotation is slow enough). This varying signal will reach a maximum when the antenna is rotated so it is aligned in the direction of the target, by looking for this maximum and moving the antenna in that direction, a target can be automatically tracked.

One problem with this approach is that radar signals often change in amplitude for reasons that have nothing to do with beam position. Over the period of a few tenths of seconds, for instance, changes in target heading, rain clouds and other issues can dramatically affect the returned signal. Since conical scanning systems depend on the signal growing or weakening due only to the position of the target relative to the beam, such changes in reflected signal can cause it to be "confused" about the position of the target within the beam's scanning area.

Jamming a conical scanner is also relatively easy. The jammer simply has to send out signals on the radar's frequency with enough strength to make it think that was the strongest return. In this case a series of random short bursts of signal will appear to be a series of targets in different locations within the beam. Jamming of this sort can be made more effective by timing the signals to be the same as the rotational speed of the feed, but broadcast at a slight delay, which results in a second strong peak within the beam, with nothing to distinguish the two. Jammers of this sort were deployed quite early, the British used them during World War II
World War II
World War II, or the Second World War , was a global conflict lasting from 1939 to 1945, involving most of the world's nations—including all of the great powers—eventually forming two opposing military alliances: the Allies and the Axis...

 against the German conical-scanning Würzburg radar
Würzburg radar
The Würzburg radar was the primary ground-based gun laying radar for both the Luftwaffe and the German Army during World War II. Initial development took place before the war, entering service in 1940. Eventually over 4,000 Würzburgs of various models were produced...

.

Monopulse basics

Monopulse radars are similar in general construction to conical scanning systems, but add one more feature. Instead of broadcasting the signal out of the antenna "as is", they split the beam into parts and then send the two signals out of the antenna in slightly different directions. When the reflected signals are received they are amplified separately and compared to each other, indicating which direction has a stronger return, and thus the general direction of the target relative to the boresight. Since this comparison is carried out during one pulse, which is typically a few microseconds, changes in target position or heading will have no effect on the comparison.


Making such a comparison requires that different parts of the beam be distinguished from each other. Normally this is achieved by splitting the pulse into two parts and polarizing each one separately before sending it to a set of slightly off-axis feed horns. This results in a set of lobes, usually two, overlapping on the boresight. These lobes are then rotated as in a normal conical scanner. On reception the signals are separated again, and then one signal is inverted in power and the two are then summed. If the target is to one side of the boresight the resulting sum will be positive, if it's on the other, negative.

If the lobes are closely spaced, this signal can produce a high degree of pointing accuracy within the beam, adding to the natural accuracy of the conical scanning system. Whereas classical conical scan systems generate pointing accuracy on the order of 0.1 degree, monopulse radars generally improve this by a factor of 10, and advanced tracking radars like the AN/FPS-16
AN/FPS-16
The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar , used extensively by the NASA manned space program and the U.S. Air Force...

 are accurate to 0.006 degrees. This is an accuracy of about 10 m at a distance of 100 km.

Jamming resistance is greatly improved over conical scanning. Filters can be inserted to remove any signal that is either unpolarized, or polarized only in one direction. In order to confuse such a system, the jamming signal would have to duplicate the polarization of the signal as well as the timing, but since the aircraft receives only one lobe, determining the precise polarization of the signal is difficult. Against monopulse systems, ECM
Electronic countermeasures
An electronic countermeasure is an electrical or electronic device designed to trick or deceive radar, sonar or other detection systems, like infrared or lasers. It may be used both offensively and defensively to deny targeting information to an enemy...

 has generally resorted to broadcasting white noise
White noise
White noise is a random signal with a flat power spectral density. In other words, the signal contains equal power within a fixed bandwidth at any center frequency...

 to simply blind the radar, instead of attempting to produce false localized returns.

Antenna Sampling

Monopulse antennas produce a sum signal and two delta signals. This allows angular measurement to be performed using a single receive pulse. The sum signal usually passes back down the waveguide used to send the transmit pulse. The two delta signals are elevation (up-down) and traverse (left-right).

The sum signal corresponds with the antenna beam along center-line of the antenna. The delta signals are pairs of beams that are adjacent to the center-line of the sum antenna beam. The delta beam measurements produce plus or minus values depending upon the quadrant.
Quadrants LEFT RIGHT
UP QUADRANT II: +ΔEl -ΔAz QUADRANT I: +ΔEl +ΔAz
DOWN QUADRANT III: -ΔEl -ΔAz QUADRANT IV: -ΔEl +ΔAz


The sum signal is created by a feedhorn structure positioned to maximize signal at the center of the antenna beam. The delta RF signals are created by pairs of antenna feed-horns located adjacent to the sum feed-horn (sum feed-horn not shown in the figure). The output of each pair of delta feed-horns are added together, and this creates zero output signal when the incoming RF signal is located at the center of the antenna beam. The signal strength from each delta beam increases as the aircraft drifts further away from the antenna center-line.

For the waveguide image that is shown, a horizontally polarized RF signal arrives at the two feed horns to produce a left/right delta signal. The arriving energy from the RF wavefront is launched into both waveguide feedhorns. The RF signal from both feedhorns travels up the waveguide where the signals from the left and right feedhorn are combined. The combiner
Diplexer
A diplexer is a passive device that implements frequency domain multiplexing. Two ports are multiplexed onto a third port . The signals on ports L and H occupy disjoint frequency bands...

 performs a mathematical subtraction on the electrical signals arriving from the feedhorns. That subtraction produces the delta signal. A similar feedhorn configuration is used to produce the up/down delta signal (not shown). The waveguide assembly can be used by itself. For a high gain antenna, the feedhorn assembly is located facing the reflecting surface at or near the focal point.

For the waveguide image that is shown, the sum signal would be created by a single waveguide feedhorn centered between the two feedhorns that are shown.

The sum and delta radio frequency signals are converted to a lower frequency in the receiver
Receiver (radio)
A radio receiver converts signals from a radio antenna to a usable form. It uses electronic filters to separate a wanted radio frequency signal from all other signals, the electronic amplifier increases the level suitable for further processing, and finally recovers the desired information through...

 where sampling takes place. A signal processor
Signal processing
Signal processing is an area of systems engineering, electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time...

 produces the error signal using these samples.

The + or - value for each delta signal is created by phase shift of 0 degrees or 180 degrees when compared with the sum signal. A calibration signal is injected into the receive path when the radar is idle, and this establishes a known phase shift between different microwave signal paths (quiescent mode).

The angle error is created from the delta signal by performing a complex ratio. This is done for the left/right delta beams, and this is also done for the up/down delta beams (two ratios). An explanation of how real and imaginary parts
Real and imaginary parts
In mathematics, a hypercomplex number has a real part and an imaginary part associated with it. This is most familiar in the context of complex numbers, but extends to the other hypercomplex algebras such as split-complex numbers and quaternions....

 are used with RADAR can be found in the description of Pulse Doppler.


The result is a signed number
Sign (mathematics)
In mathematics, the word sign refers to the property of being positive or negative. Every nonzero real number is either positive or negative, and therefore has a sign. Zero itself is signless, although in some contexts it makes sense to consider a signed zero...

. The outcome of the calibration process is to rotate the complex antenna angle error vector onto the real axis to reduce signal processing losses.

The angle error is used to make an adjustment to position the target along the centerline of the antenna. On mechanically steered radar, the vertical angle error drives a motor that moves the antenna up or down, and the horizontal angle error dries a motor that steers the antenna left or right. On a missile, the angle error is an input to the guidance system that positions the guidance fins that rotate the body of the missile so that the target is in the centerline of the antenna.

A wheel, mirror and a light can be used to visualize real and imaginary described in this equation. The mirror is placed at a 45 degree angle above the wheel so that you can see the front and top of the wheel at the same time. The light is attached to the wheel so that you can see the wheel when the room lights are turned off. You sit directly in front of the wheel while a friend rotates the wheel. The view of the front of the wheel (real) and the top of the wheel (imaginary) tell you the position of the wheel.

Pairs of real and imaginary values form a complex number
Complex number
A complex number is a number consisting of a real part and an imaginary part. Complex numbers extend the idea of the one-dimensional number line to the two-dimensional complex plane by using the number line for the real part and adding a vertical axis to plot the imaginary part...

 explained as real and imaginary parts
Real and imaginary parts
In mathematics, a hypercomplex number has a real part and an imaginary part associated with it. This is most familiar in the context of complex numbers, but extends to the other hypercomplex algebras such as split-complex numbers and quaternions....

.

Dynamic calibration is needed when there are long waveguide runs between the antenna and first down converter (see Superheterodyne receiver
Superheterodyne receiver
In electronics, a superheterodyne receiver uses frequency mixing or heterodyning to convert a received signal to a fixed intermediate frequency, which can be more conveniently processed than the original radio carrier frequency...

). This compensates for temperature changes that alter the size and length of wave-guide, which will cause phase variations that produce incorrect angle error signals for long wave-guide runs. The Cal term is created by injecting a calibration signal into the receive waveguide while the system is not active (sum and delta). The angle error of the calibration signal is used to evaluate angle error during normal operation. Antenna tuning is used to make adjustments that create the desired error signal when the antenna is calibrated on an antenna range.

When the waveguide run is short between the antenna and receiver, the calibration signal can be omitted and the calibration term can be set to a fixed value. A fixed value may also be stored for systems with long wave-guide runs to allow degraded operation when RF calibration cannot be performed. The waveguide assembly may need to be tuned using an antenna range to obtain consistent results.

Monopulse gives much better target azimuth measurements than the estimating of the angular position shown in figure 1. It can operate at a much lower interrogation rate to benefit others in the environment. Monopulse systems usually contain enhanced processing to give better quality target code information. A single pulse contains all of the information required for an angle error measurement (hence the use of the term monopulse).
The elements in linear antenna array are divided into two halves. These two separate antennae arrays are placed symmetrically in the focal plane on each side of the axis of the radar antenna (this often called boresight axis). In transmission (Tx) mode, both antennae arrays will be fed in phase and the radiation pattern is represented by the ice blue area, which is called the Σ or Sum -diagram. (shown in the Figure as blue graph and pattern)
In reception (Rx) mode an additional receiving way is possible. From the received signals of both separate antenna arrays, it is possible to calculate Σ (like the transmitted Sum -diagram) and the difference ΔAz, the so called Delta azimuth- diagram. The antenna pattern is given by the red and green area on the same figure. Both signals are then compared as a reply processor function and their difference is used to estimate the azimuth of the target more exactly.
The angle between the axis of the antenna (boresight axis) and the direction of the target is also known as OBA-value (Off-Boresight Angle).
The elevation angle is also measured at 3D radars as a third coordinate. Well, the procedure is used twice now. Here the antenna is derived in addition in an upper half and a lower half. The second difference channel (ΔEl) is called „Delta Elevation” now.
II

+ΔEl -ΔAz

I

+ΔEl+ΔAz

III

-ΔEl -ΔAz

IV

-ΔEl+ΔAz

Figure 5: the four quadrants of a monopulse antenna
The Monopulse antenna is divided up into four quadrants now:
The following signals are formed from the received signals of these four quadrants:
Sum - signal Σ ( I + II + III + IV )
Difference - signal ΔAz ( I + IV ) - ( II + III )
Difference - signal ΔEl ( I + II ) - ( III + IV )
The · Auxiliary Signal Ω
also shall to complete the picture be mentioned, although this one isn't tied to the monopulse antenna. This channel to the compensation of side lobes always has practically his own small antenna and has a very wide antenna diagram and also serves for the reconnaissance of active jamming.
All these signals need an own receiver channel.

Antenna Positioning

Tracking systems produce constant aircraft position information, and the antenna position is part of this information. Antenna error signals are used to create feedback
Feedback
Feedback describes the situation when output from an event or phenomenon in the past will influence an occurrence or occurrences of the same Feedback describes the situation when output from (or information about the result of) an event or phenomenon in the past will influence an occurrence or...

 as part of a RADAR system that can track aircraft.

The horizontal signal and the vertical signal created from antenna RF samples are called angle errors. These angle error signals indicate the angular distance between the center of the antenna beam and the position of the aircraft within the antenna beam.

For a mechanically steered antenna, the horizontal signal and vertical signal are used to create a drive signal that creates torque for two antenna positioning motors. One motor moves the antenna left/right. The other motor drives the antenna up/down. The result is to move the antenna position so that the center of the antenna beam remains aimed directly at the aircraft even when the aircraft is moving perpendicular to the antenna beam.

For a track while scan
Track while scan
The track while scan is a mode of radar operation in which the radar allocates part of its power to tracking the target or targets while part of its power is allocated to scanning, unlike the straight tracking mode, when the radar directs all its power to tracking the acquired targets...

 radar, position and velocity is maintained for multiple aircraft. The last position of the aircraft is coasted using the velocity, and that information is used to direct a beam of energy toward the aircraft. The monopulse angle error information that is received is used to adjust the position and velocity data for the aircraft. This is a common mode with phased array
Phased array
In wave theory, a phased array is an array of antennas in which the relative phases of the respective signals feeding the antennas are varied in such a way that the effective radiation pattern of the array is reinforced in a desired direction and suppressed in undesired directions.An antenna array...

 radar systems.

Amplitude-Comparison Monopulse
Amplitude-Comparison Monopulse
Amplitude monopulse direction finding refers to a common technique employed in radar systems to improve the accuracy with which the direction of arrival of a pulse can be estimated.-Approach:...

 provides an explanation of the antenna signals involved in this process.

Doppler

Doppler effect
Doppler effect
The Doppler effect , named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague, is the change in frequency of a wave for an observer moving relative to the source of the wave. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from...

 can be used to separate different objects based on speed. Pulse Doppler RADAR signal processing uses this technique. This is combined with conical scanning or monopulse to improve track reliability. It is necessary to separate the object signal from the interference to avoid being pulled off the object. This avoids problems where the system is fooled by aircraft flying to close to the surface of the earth or aircraft flying through clouds.

Conical scan and monopulse antennas are susceptible to interference from weather phenomenon and stationary objects. The resulting interference can produce feedback signals that move the antenna beam away from the aircraft. This can produce an unreliable antenna position when the antenna is aimed too near the ground or too near to heavy weather. Systems with no Pulse Doppler tracking mode may remain aimed at irrelevant objects like trees or clouds. Constant operator attention is required when there is no Doppler signal processing.

History

Monopulse radar was extremely "high tech" when it was first introduced by Robert M. Page
Robert Morris Page
Robert Morris Page was an American physicist who was a leading figure in the development of radar technology. Later, Page served as the Director of Research for the U.S. Naval Research Laboratory.-Life and career:...

 in 1943 in a Naval Research Laboratory experiment. As a result, it was very expensive, labor-intensive due to complexity, and less reliable. It was only used when extreme accuracy was needed that justified the cost. Early uses included the Nike Ajax missile, which demanded very high accuracy, or for tracking radars used for measuring various rocket
Rocket
A rocket is a missile, spacecraft, aircraft or other vehicle which obtains thrust from a rocket engine. In all rockets, the exhaust is formed entirely from propellants carried within the rocket before use. Rocket engines work by action and reaction...

 launches. An early monopulse radar development, in 1958, was the AN/FPS-16
AN/FPS-16
The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar , used extensively by the NASA manned space program and the U.S. Air Force...

, on which NRL and RCA collaborated. The earliest version, XN-1, utilised a metal plate lens. The second version XN-2 used a conventional 3.65 meter [12 ft] parabolic antenna, and was the version which went to production. These radars played an important part in the Mercury, Gemini, and early Apollo missions, being deployed in Bermuda, Tannarive, and Australia, among other places for that purpose. The IRACQ [Increased Range ACQuisition] modification was installed on certain of these installations; certainly the one located at Woomera, Australia was so modified. One of the larger installations first appeared in the 1970s as the US Navy's AN/SPY-1
AN/SPY-1
The AN/SPY-1 is a US naval radar system manufactured by Lockheed Martin. The array is a passive electronically scanned system and is a key component of the Aegis Combat System. The system is computer controlled, using four complementary antennas to provide 360 degree coverage...

 radar used on the Aegis Combat System
Aegis combat system
The Aegis Combat System is an integrated naval weapons system developed by the Missile and Surface Radar Division of RCA, and now produced by Lockheed Martin...

, and MK-74 radar used used on Tartar Guided Missile Fire Control System
Tartar Guided Missile Fire Control System
The Tartar Guided Missile Fire Control System is an air defense system developed by the United States Navy to defend warships from air attack. Since its introduction the system has been improved and sold to several United States allies.-Description:...

and research. The cost and complexity of implementing monopulse tracking was reduced and reliability increased when digital signal processing became available after the 1970s, and the technology is today found in most modern tracking radars, and in many types of disposable ordnance like missiles.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK