Fundamental theorem of Riemannian geometry

# Fundamental theorem of Riemannian geometry

Discussion
 Ask a question about 'Fundamental theorem of Riemannian geometry' Start a new discussion about 'Fundamental theorem of Riemannian geometry' Answer questions from other users Full Discussion Forum

Encyclopedia
In Riemannian geometry
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point which varies smoothly from point to point. This gives, in particular, local notions of angle, length...

, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold
Riemannian manifold
In Riemannian geometry and the differential geometry of surfaces, a Riemannian manifold or Riemannian space is a real differentiable manifold M in which each tangent space is equipped with an inner product g, a Riemannian metric, which varies smoothly from point to point...

(or pseudo-Riemannian manifold
Pseudo-Riemannian manifold
In differential geometry, a pseudo-Riemannian manifold is a generalization of a Riemannian manifold. It is one of many mathematical objects named after Bernhard Riemann. The key difference between a Riemannian manifold and a pseudo-Riemannian manifold is that on a pseudo-Riemannian manifold the...

) there is a unique torsion-free metric connection
Affine connection
In the branch of mathematics called differential geometry, an affine connection is a geometrical object on a smooth manifold which connects nearby tangent spaces, and so permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space...

, called the Levi-Civita connection
Levi-Civita connection
In Riemannian geometry, the Levi-Civita connection is a specific connection on the tangent bundle of a manifold. More specifically, it is the torsion-free metric connection, i.e., the torsion-free connection on the tangent bundle preserving a given Riemannian metric.The fundamental theorem of...

of the given metric. Here a metric (or Riemannian) connection is a connection which preserves the metric tensor
Metric tensor
In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold which takes as input a pair of tangent vectors v and w and produces a real number g in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean...

.

More precisely:

Let be a
Riemannian manifold
Riemannian manifold
In Riemannian geometry and the differential geometry of surfaces, a Riemannian manifold or Riemannian space is a real differentiable manifold M in which each tangent space is equipped with an inner product g, a Riemannian metric, which varies smoothly from point to point...

(or pseudo-Riemannian manifold
Pseudo-Riemannian manifold
In differential geometry, a pseudo-Riemannian manifold is a generalization of a Riemannian manifold. It is one of many mathematical objects named after Bernhard Riemann. The key difference between a Riemannian manifold and a pseudo-Riemannian manifold is that on a pseudo-Riemannian manifold the...

)
then there is a unique connection which satisfies the following conditions:
1. for any vector fields we have , where denotes the derivative of the function along vector field .
2. for any vector fields , ,
where denotes the Lie bracket
Lie bracket
Lie bracket can refer to:*A bilinear binary operation defined on elements of a Lie algebra*Lie bracket of vector fields...

s for vector field
Vector field
In vector calculus, a vector field is an assignmentof a vector to each point in a subset of Euclidean space. A vector field in the plane for instance can be visualized as an arrow, with a given magnitude and direction, attached to each point in the plane...

s .

(The first condition means that the metric tensor is preserved by parallel transport
Parallel transport
In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection , then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the...

, while the second condition expresses the fact that the torsion of is zero.)

An extension of the fundamental theorem states that given a pseudo-Riemannian manifold there is a unique connection preserving the metric tensor
Metric tensor
In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold which takes as input a pair of tangent vectors v and w and produces a real number g in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean...

with any given vector-valued 2-form as its torsion.

The following technical proof presents a formula for Christoffel symbols of the connection in a local coordinate system. For a given metric this set of equations can become rather complicated. There are quicker and simpler methods to obtain the Christoffel symbols for a given metric, e.g. using the action
Action (physics)
In physics, action is an attribute of the dynamics of a physical system. It is a mathematical functional which takes the trajectory, also called path or history, of the system as its argument and has a real number as its result. Action has the dimension of energy × time, and its unit is...

integral and the associated Euler-Lagrange equations.

## Proof

Let m be the dimension of M and, in some local chart, consider the standard coordinate vector fields

Locally, the entry gi j of the metric tensor is then given by

To specify the connection it is enough to specify, for all i, j, and k,

We also recall that, locally, a connection is given by m3 smooth functions {}, where

The torsion-free property means

On the other hand, compatibility with the Riemannian metric implies that

For a fixed, i, j, and k, permutation gives 3 equations with 6 unknowns. The torsion free assumption reduces the number of variables to 3. Solving the resulting system of 3 linear equations gives unique solutions

This is the first Christoffel identity.

Since

Where we use Einstein summation convention. That is, an index repeated subscript and superscript implies that it is summed over all values.
inverting the metric tensor gives the second Christoffel identity:

Once again, with Einstein summation convention. The resulting unique connection is called the Levi-Civita connection.

## The Koszul formula

An alternative proof of the Fundamental theorem of Riemannian geometry proceeds by showing that a torsion-free metric connection on a Riemannian manifold is necessarily given by the following formula, known as the Koszul formula:
This proves the uniqueness of the Levi-Civita connection. Existence is proven by showing that this expression is tensorial in X and Z, satisfies the Leibniz rule in Y, and that hence defines a connection. This is a metric connection, because the symmetric part of the formula in Y and Z is the first term on the first line; it is torsion-free because the anti-symmetric part of the formula in X and Y is the first term on the second line.