Convection

Convection

Overview

Convection is the movement of molecules within fluid
Fluid
In physics, a fluid is a substance that continually deforms under an applied shear stress. Fluids are a subset of the phases of matter and include liquids, gases, plasmas and, to some extent, plastic solids....

s (i.e. liquid
Liquid
Liquid is one of the three classical states of matter . Like a gas, a liquid is able to flow and take the shape of a container. Some liquids resist compression, while others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly...

s, gas
Gas
Gas is one of the three classical states of matter . Near absolute zero, a substance exists as a solid. As heat is added to this substance it melts into a liquid at its melting point , boils into a gas at its boiling point, and if heated high enough would enter a plasma state in which the electrons...

es) and rheid
Rheid
In geology, a rheid is a solid material that deforms by viscous flow. The term has the same Greek root as rheology, the science of viscoelasticity and nonlinear flow.-Types of rheids:...

s. It cannot take place in solids, since neither bulk current flows nor significant diffusion can take place in solids.

Convection is one of the major modes of heat transfer
Convective heat transfer
Convective heat transfer, often referred to as convection, is the transfer of heat from one place to another by the movement of fluids. The presence of bulk motion of the fluid enhances the heat transfer between the solid surface and the fluid. Convection is usually the dominant form of heat...

 and mass transfer
Mass transfer
Mass transfer is the net movement of mass from one location, usually meaning a stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, adsorption, drying, precipitation, membrane filtration, and distillation. Mass transfer is used...

. Convective heat and mass transfer take place through both diffusion
Diffusion
Molecular diffusion, often called simply diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size of the particles...

 – the random Brownian motion
Brownian motion
Brownian motion or pedesis is the presumably random drifting of particles suspended in a fluid or the mathematical model used to describe such random movements, which is often called a particle theory.The mathematical model of Brownian motion has several real-world applications...

 of individual particles in the fluid – and by advection
Advection
Advection, in chemistry, engineering and earth sciences, is a transport mechanism of a substance, or a conserved property, by a fluid, due to the fluid's bulk motion in a particular direction. An example of advection is the transport of pollutants or silt in a river. The motion of the water carries...

, in which matter or heat is transported by the larger-scale motion of currents in the fluid.
Discussion
Ask a question about 'Convection'
Start a new discussion about 'Convection'
Answer questions from other users
Full Discussion Forum
 
Unanswered Questions
Recent Discussions
Encyclopedia

Convection is the movement of molecules within fluid
Fluid
In physics, a fluid is a substance that continually deforms under an applied shear stress. Fluids are a subset of the phases of matter and include liquids, gases, plasmas and, to some extent, plastic solids....

s (i.e. liquid
Liquid
Liquid is one of the three classical states of matter . Like a gas, a liquid is able to flow and take the shape of a container. Some liquids resist compression, while others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly...

s, gas
Gas
Gas is one of the three classical states of matter . Near absolute zero, a substance exists as a solid. As heat is added to this substance it melts into a liquid at its melting point , boils into a gas at its boiling point, and if heated high enough would enter a plasma state in which the electrons...

es) and rheid
Rheid
In geology, a rheid is a solid material that deforms by viscous flow. The term has the same Greek root as rheology, the science of viscoelasticity and nonlinear flow.-Types of rheids:...

s. It cannot take place in solids, since neither bulk current flows nor significant diffusion can take place in solids.

Convection is one of the major modes of heat transfer
Convective heat transfer
Convective heat transfer, often referred to as convection, is the transfer of heat from one place to another by the movement of fluids. The presence of bulk motion of the fluid enhances the heat transfer between the solid surface and the fluid. Convection is usually the dominant form of heat...

 and mass transfer
Mass transfer
Mass transfer is the net movement of mass from one location, usually meaning a stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, adsorption, drying, precipitation, membrane filtration, and distillation. Mass transfer is used...

. Convective heat and mass transfer take place through both diffusion
Diffusion
Molecular diffusion, often called simply diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size of the particles...

 – the random Brownian motion
Brownian motion
Brownian motion or pedesis is the presumably random drifting of particles suspended in a fluid or the mathematical model used to describe such random movements, which is often called a particle theory.The mathematical model of Brownian motion has several real-world applications...

 of individual particles in the fluid – and by advection
Advection
Advection, in chemistry, engineering and earth sciences, is a transport mechanism of a substance, or a conserved property, by a fluid, due to the fluid's bulk motion in a particular direction. An example of advection is the transport of pollutants or silt in a river. The motion of the water carries...

, in which matter or heat is transported by the larger-scale motion of currents in the fluid. In the context of heat and mass transfer, the term "convection" is used to refer to the sum of advective and diffusive transfer. Note that in common use the term convection may refer loosely to heat transfer by convection, as opposed to mass transfer by convection, or the convection process in general. Sometimes "convection" is even used to refer specifically to "free heat convection" (natural heat convection), as opposed to forced heat convection. However, in mechanics the correct use of the word is the general sense, and different types of convection should be properly qualified for clarity.

Convection can be qualified in terms of being natural, forced, gravitational, granular, or thermomagnetic. It may also be said to be due to combustion, capillary action, or Marangoni and Weissenberg effects. Due to its role in heat transfer, natural convection plays a role in the stucture of Earth's atmosphere
Earth's atmosphere
The atmosphere of Earth is a layer of gases surrounding the planet Earth that is retained by Earth's gravity. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention , and reducing temperature extremes between day and night...

, its oceans, and its mantle. Discrete convective cells in the atmosphere can be seen as cloud
Cloud
A cloud is a visible mass of liquid droplets or frozen crystals made of water and/or various chemicals suspended in the atmosphere above the surface of a planetary body. They are also known as aerosols. Clouds in Earth's atmosphere are studied in the cloud physics branch of meteorology...

s, with stronger convection resulting in thunderstorm
Thunderstorm
A thunderstorm, also known as an electrical storm, a lightning storm, thundershower or simply a storm is a form of weather characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere known as thunder. The meteorologically assigned cloud type associated with the...

s. Natural convection also plays a role in stellar physics.

Terminology


The term "convection" may have slightly different but related usages in different contexts. The broader sense is in fluid mechanics
Fluid mechanics
Fluid mechanics is the study of fluids and the forces on them. Fluid mechanics can be divided into fluid statics, the study of fluids at rest; fluid kinematics, the study of fluids in motion; and fluid dynamics, the study of the effect of forces on fluid motion...

, where "convection" refers to the motion of fluid (regardless of cause). However in thermodynamics
Thermodynamics
Thermodynamics is a physical science that studies the effects on material bodies, and on radiation in regions of space, of transfer of heat and of work done on or by the bodies or radiation...

 "convection" often refers specifically to heat transfer by convection.

Additionally, convection includes fluid movement both by bulk motion (advection
Advection
Advection, in chemistry, engineering and earth sciences, is a transport mechanism of a substance, or a conserved property, by a fluid, due to the fluid's bulk motion in a particular direction. An example of advection is the transport of pollutants or silt in a river. The motion of the water carries...

) and by the motion of individual particles (diffusion
Diffusion
Molecular diffusion, often called simply diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size of the particles...

). However in some cases, convection is taken to mean only advective phenomena. For instance, in the transport equation
Generic scalar transport equation
The generic scalar transport equation is a general partial differential equation that describes transport phenomena such as heat transfer, mass transfer, fluid dynamics , etc. A general form of the equation is \big...

, which describes a number of different transport phenomena, terms are separated into "convective" and "diffusive" effects, with "convective" meaning purely advective in context. A similar differentiation is made in the Navier–Stokes equations. In such cases the precise meaning of the term may be clear only from context.

Examples and applications of convection


Convection occurs on a large scale in atmospheres, ocean
Ocean
An ocean is a major body of saline water, and a principal component of the hydrosphere. Approximately 71% of the Earth's surface is covered by ocean, a continuous body of water that is customarily divided into several principal oceans and smaller seas.More than half of this area is over 3,000...

s, planet
Planet
A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

ary mantle
Mantle (geology)
The mantle is a part of a terrestrial planet or other rocky body large enough to have differentiation by density. The interior of the Earth, similar to the other terrestrial planets, is chemically divided into layers. The mantle is a highly viscous layer between the crust and the outer core....

s, and it provides the mechanism of heat transfer for a large fraction of the outermost interiors of our sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

 and all stars. Fluid movement during convection may be invisibly slow, or it may be obvious and rapid, as in a hurricane. On astronomical scales, convection of gas and dust is thought to occur in the accretion disks of black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

s, at speeds which may closely approach that of light.

Heat transfer


Convective heat transfer is a mechanism of heat transfer
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the exchange of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer...

 occurring because of bulk motion (observable movement) of fluids. Heat
Heat
In physics and thermodynamics, heat is energy transferred from one body, region, or thermodynamic system to another due to thermal contact or thermal radiation when the systems are at different temperatures. It is often described as one of the fundamental processes of energy transfer between...

 is the entity of interest being advected (carried), and diffused (dispersed). This can be contrasted with conductive
Heat conduction
In heat transfer, conduction is a mode of transfer of energy within and between bodies of matter, due to a temperature gradient. Conduction means collisional and diffusive transfer of kinetic energy of particles of ponderable matter . Conduction takes place in all forms of ponderable matter, viz....

 heat transfer, which is the transfer of energy by vibrations at a molecular level through a solid or fluid, and radiative heat transfer, the transfer of energy through electromagnetic waves.

Heat is transferred by convection in numerous examples of naturally occurring fluid flow, such as: wind, oceanic currents, and movements within the Earth's mantle. Convection is also used in engineering practices to provide desired temperature changes, as in heating of homes, industrial processes, cooling of equipment, etc.

The rate of convective heat transfer may be improved by the use of a heat sink
Heat sink
A heat sink is a term for a component or assembly that transfers heat generated within a solid material to a fluid medium, such as air or a liquid. Examples of heat sinks are the heat exchangers used in refrigeration and air conditioning systems and the radiator in a car...

, often in conjunction with a fan. For instance, a typical computer CPU will have a purpose-made fan to ensure its operating temperature is kept within tolerable limits.

Convection cells




A convection cell, also known as a Bénard cell is a characteristic fluid flow pattern in many convection systems. A rising body of fluid typically loses heat because it encounters a cold surface; because it exchanges heat with colder liquid through direct exchange; or in the example of the Earth's atmosphere, because it radiates heat. Because of this heat loss the fluid becomes denser than the fluid underneath it, which is still rising. Since it cannot descend through the rising fluid, it moves to one side. At some distance, its downward force overcomes the rising force beneath it, and the fluid begins to descend. As it descends, it warms again and the cycle repeats itself.

Atmospheric circulation




Atmospheric circulation is the large-scale movement of air, and the means by which thermal energy is distributed on the surface of the Earth, together with the much slower (lagged) ocean circulation system. The large-scale structure of the atmospheric circulation varies from year to year, but the basic climatological structure remains fairly constant.

Latitudinal circulation is the consequence of the fact that incident solar radiation per unit area is highest at the heat equator, and decreases as the latitude increases, reaching its minimum at the poles. It consists of two primary convection cells, the Hadley cell
Hadley cell
The Hadley cell, named after George Hadley, is a circulation pattern that dominates the tropical atmosphere, with rising motion near the equator, poleward flow 10–15 kilometers above the surface, descending motion in the subtropics, and equatorward flow near the surface...

 and the polar vortex
Polar vortex
A polar vortex is a persistent, large-scale cyclone located near one or both of a planet's geographical poles. On Earth, the polar vortices are located in the middle and upper troposphere and the stratosphere...

, with the Hadley cell
Hadley cell
The Hadley cell, named after George Hadley, is a circulation pattern that dominates the tropical atmosphere, with rising motion near the equator, poleward flow 10–15 kilometers above the surface, descending motion in the subtropics, and equatorward flow near the surface...

 experiencing stronger convection as a consequence of the release of latent heat energy upon condensation at higher altitudes.

Longitudinal circulation, on the other hand, comes about because water has a higher specific heat capacity than land and thereby absorbs and releases more heat, but the temperature changes less than land. This effect is noticeable; it is what brings the sea breeze, air cooled by the water, ashore in the day, and carries the land breeze, air cooled by contact with the ground, out to sea during the night. Longitudinal circulation consists of two cells, the Walker circulation
Walker circulation
The Walker circulation, also known as the Walker cell, is a conceptual model of the air flow in the tropics in the lower atmosphere . According to this model parcels of air follow a closed circulation in the zonal and vertical directions...

 and El Niño / Southern Oscillation
El Niño-Southern Oscillation
El Niño/La Niña-Southern Oscillation, or ENSO, is a quasiperiodic climate pattern that occurs across the tropical Pacific Ocean roughly every five years...

.

Weather




More localized phenomena than global atmospheric movement are also due to convection, including wind
Wind
Wind is the flow of gases on a large scale. On Earth, wind consists of the bulk movement of air. In outer space, solar wind is the movement of gases or charged particles from the sun through space, while planetary wind is the outgassing of light chemical elements from a planet's atmosphere into space...

 and some of the hydrologic cycle. For example, a foehn wind is a type of down-slope wind which occurs in the downwind side of a mountain range. It results from the adiabatic warming of air which has dropped most of its moisture on windward slopes. As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes.

A thermal column (or thermal) is a vertical section of rising air in the lower altitudes of the Earth's atmosphere. Thermals are created by the uneven heating of the Earth's surface from solar radiation. The Sun warms the ground, which in turn warms the air directly above it. The warmer air expands, becoming less dense than the surrounding air mass, and creating a thermal low
Thermal low
Thermal lows, or heat lows, are non-frontal low-pressure areas that occur over the continents in the subtropics such as near the Sonoran Desert, the Mexican plateau, Sahara, South America over northwest Argentina, Australia, the Iberian peninsula, and Tibetan plateau during the warm season as the...

. The mass of lighter air rises, and as it does, it cools due to its expansion at lower high-altitude pressures. It stops rising when it has cooled to the same temperature as the surrounding air. Associated with a thermal is a downward flow surrounding the thermal column. The downward moving exterior is caused by colder air being displaced at the top of the thermal. Another convection-driven weather effect is the sea breeze
Sea breeze
A sea-breeze is a wind from the sea that develops over land near coasts. It is formed by increasing temperature differences between the land and water; these create a pressure minimum over the land due to its relative warmth, and forces higher pressure, cooler air from the sea to move inland...

.
Warm air has a lower density than cool air, so warm air rises within cooler air, similar to hot air balloon
Hot air balloon
The hot air balloon is the oldest successful human-carrying flight technology. It is in a class of aircraft known as balloon aircraft. On November 21, 1783, in Paris, France, the first untethered manned flight was made by Jean-François Pilâtre de Rozier and François Laurent d'Arlandes in a hot air...

s. Clouds form as relatively warmer air carrying moisture rises within cooler air. As the moist air rises, it cools causing some of the water vapor
Water vapor
Water vapor or water vapour , also aqueous vapor, is the gas phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Under typical atmospheric conditions, water vapor is continuously...

 in the rising packet of air to condense
Condensation
Condensation is the change of the physical state of matter from gaseous phase into liquid phase, and is the reverse of vaporization. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition....

. When the moisture condenses, it releases energy known as latent heat
Latent heat
Latent heat is the heat released or absorbed by a chemical substance or a thermodynamic system during a process that occurs without a change in temperature. A typical example is a change of state of matter, meaning a phase transition such as the melting of ice or the boiling of water. The term was...

 of fusion which allows the rising packet of air to cool less than its surrounding air, continuing the cloud's ascension. If enough instability
Convective available potential energy
In meteorology, convective available potential energy , sometimes, simply, available potential energy , is the amount of energy a parcel of air would have if lifted a certain distance vertically through the atmosphere...

 is present in the atmosphere, this process will continue long enough for cumulonimbus clouds to form, which support lightning and thunder. Generally, thunderstorms require three conditions to form: moisture, an unstable airmass, and a lifting force (heat).

All thunderstorm
Thunderstorm
A thunderstorm, also known as an electrical storm, a lightning storm, thundershower or simply a storm is a form of weather characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere known as thunder. The meteorologically assigned cloud type associated with the...

s, regardless of type, go through three stages: the developing stage, the mature stage, and the dissipation stage. The average thunderstorm has a 24 km (14.9 mi) diameter. Depending on the conditions present in the atmosphere, these three stages take an average of 30 minutes to go through.

Oceanic circulation


Solar radiation affects the ocean
Ocean
An ocean is a major body of saline water, and a principal component of the hydrosphere. Approximately 71% of the Earth's surface is covered by ocean, a continuous body of water that is customarily divided into several principal oceans and smaller seas.More than half of this area is over 3,000...

s: warm water from the Equator
Equator
An equator is the intersection of a sphere's surface with the plane perpendicular to the sphere's axis of rotation and containing the sphere's center of mass....

 tends to circulate toward the pole
Geographical pole
A geographical pole is either of the two points—the north pole and the south pole—on the surface of a rotating planet where the axis of rotation meets the surface of the body...

s, while cold polar water heads towards the Equator. The surface currents are initially dictated by surface wind conditions. The trade winds blow westward in the tropics, and the westerlies
Westerlies
The Westerlies, anti-trades, or Prevailing Westerlies, are the prevailing winds in the middle latitudes between 30 and 60 degrees latitude, blowing from the high pressure area in the horse latitudes towards the poles. These prevailing winds blow from the west to the east, and steer extratropical...

 blow eastward at mid-latitudes. This wind pattern applies a stress
Stress (physics)
In continuum mechanics, stress is a measure of the internal forces acting within a deformable body. Quantitatively, it is a measure of the average force per unit area of a surface within the body on which internal forces act. These internal forces are a reaction to external forces applied on the body...

 to the subtropical ocean surface with negative curl across the Northern Hemisphere
Northern Hemisphere
The Northern Hemisphere is the half of a planet that is north of its equator—the word hemisphere literally means “half sphere”. It is also that half of the celestial sphere north of the celestial equator...

, and the reverse across the Southern Hemisphere
Southern Hemisphere
The Southern Hemisphere is the part of Earth that lies south of the equator. The word hemisphere literally means 'half ball' or "half sphere"...

. The resulting Sverdrup transport is equatorward. Because of conservation of potential vorticity
Potential vorticity
Potential vorticity is a quantity which is proportional to the dot product of vorticity and stratification that, following a parcel of air or water, can only be changed by diabatic or frictional processes...

 caused by the poleward-moving winds on the subtropical ridge
Subtropical ridge
The subtropical ridge is a significant belt of high pressure situated around the latitudes of 30°N in the Northern Hemisphere and 30°S in the Southern Hemisphere. It is characterized by mostly calm winds, which acts to reduce air quality under its axis by causing fog overnight, and haze during...

's western periphery and the increased relative vorticity of poleward moving water, transport is balanced by a narrow, accelerating poleward current, which flows along the western boundary of the ocean basin, outweighing the effects of friction with the cold western boundary current which originates from high latitudes. The overall process, known as western intensification, causes currents on the western boundary of an ocean basin to be stronger than those on the eastern boundary.

As it travels poleward, warm water
Water
Water is a chemical substance with the chemical formula H2O. A water molecule contains one oxygen and two hydrogen atoms connected by covalent bonds. Water is a liquid at ambient conditions, but it often co-exists on Earth with its solid state, ice, and gaseous state . Water also exists in a...

 transported by the strong warm water current undergoes evaporative cooling. The cooling is wind driven: wind moving over the water cools it and also causes evaporation
Evaporation
Evaporation is a type of vaporization of a liquid that occurs only on the surface of a liquid. The other type of vaporization is boiling, which, instead, occurs on the entire mass of the liquid....

, leaving a saltier brine. In this process, the water increases in salinity
Salinity
Salinity is the saltiness or dissolved salt content of a body of water. It is a general term used to describe the levels of different salts such as sodium chloride, magnesium and calcium sulfates, and bicarbonates...

 and density, and decreases in temperature. Once sea ice forms, salts are left out of the ice, a process known as brine exclusion. These two processes produce water that is denser and colder (or, more precisely, water that is still liquid at a lower temperature). The water across the northern Atlantic ocean
Atlantic Ocean
The Atlantic Ocean is the second-largest of the world's oceanic divisions. With a total area of about , it covers approximately 20% of the Earth's surface and about 26% of its water surface area...

 becomes so dense that it begins to sink down through less salty and less dense water. (The convective action is not unlike that of a lava lamp
Lava lamp
A lava lamp is a decorative novelty item that contains blobs of colored wax inside a glass vessel filled with clear liquid; the wax rises and falls as its density changes due to heating from a incandescent light bulb underneath the vessel. The appearance of the wax is suggestive of pāhoehoe lava,...

.) This downdraft of heavy, cold and dense water becomes a part of the North Atlantic Deep Water
North Atlantic Deep Water
North Atlantic Deep Water is a water mass that forms in the North Atlantic Ocean. It is largely formed in the Labrador Sea and in the Greenland Sea by the sinking of highly saline, dense overflow water from the Greenland Sea...

, a southgoing stream.

Mantle convection


Mantle convection is the slow creeping motion of Earth's rocky mantle caused by convection currents carrying heat from the interior of the earth to the surface. It is the driving force that causes tectonic plates to move around the Earth's surface.

The Earth's surface is divided into a number of tectonic plates that are continuously being created and consumed at their opposite plate boundaries. Creation (accretion
Accretion (geology)
Accretion is a process by which material is added to a tectonic plate or a landmass. This material may be sediment, volcanic arcs, seamounts or other igneous features.-Description:...

) occurs as mantle is added to the growing edges of a plate. This hot added material cools down by conduction and convection of heat. At the consumption edges of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in the process of subduction at an ocean trench. This subducted material sinks to some depth in the Earth's interior where it is prohibited from sinking further. The subducted oceanic crust triggers volcanism.

Stack effect



The Stack effect or chimney effect is the movement of air into and out of buildings, chimneys, flue gas stacks, or other containers due to buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation and infiltration. Some cooling towers operate on this principle; similarly the solar updraft tower
Solar updraft tower
The solar updraft tower is a renewable-energy power plant. It combines the chimney effect, the greenhouse effect and the wind turbine. Air is heated by sunshine and contained in a very large greenhouse-like structure around the base of a tall chimney, and the resulting convection causes air to...

 is a proposed device to generate electricity based on the stack effect.

Stellar physics



The convection zone of a star is the range of radii in which energy is transported primarily by convection.

Granules on the photosphere
Photosphere
The photosphere of an astronomical object is the region from which externally received light originates. The term itself is derived from Ancient Greek roots, φῶς, φωτός/phos, photos meaning "light" and σφαῖρα/sphaira meaning "sphere", in reference to the fact that it is a spheric surface perceived...

 of the Sun are the visible tops of convection cells in the photosphere, caused by convection of plasma
Plasma (physics)
In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms , thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions...

 in the photosphere. The rising part of the granules is located in the center where the plasma is hotter. The outer edge of the granules is darker due to the cooler descending plasma. A typical granule has a diameter on the order of 1,000 kilometers and each lasts 8 to 20 minutes before dissipating. Below the photosphere is a layer of much larger "supergranules" up to 30,000 kilometers in diameter, with lifespans of up to 24 hours.

The image shows the solar photosphere where granules are visible. North America is superimposed to provide a sense of scale.

Convection mechanisms


Convection may happen in fluids at all scales larger than a few atoms. There are a variety of circumstances in which the forces required for natural and forced convection arise, leading to different types of convection, described below. In broad terms, convection arises because of body force
Body force
A body force is a force that acts throughout the volume of a body, in contrast to contact forces.Gravity and electromagnetic forces are examples of body forces. Centrifugal and Coriolis forces can also be viewed as body forces.This can be put into contrast to the classical definition of surface...

s acting within the fluid, such as gravity (buoyancy), or surface forces acting at a boundary of the fluid.

The causes of convection are generally described as one of either "natural" ("free") or "forced", although other mechanisms also exist (discussed below). However the distinction between natural and forced convection is particularly important for convective heat transfer
Convective heat transfer
Convective heat transfer, often referred to as convection, is the transfer of heat from one place to another by the movement of fluids. The presence of bulk motion of the fluid enhances the heat transfer between the solid surface and the fluid. Convection is usually the dominant form of heat...

.

Natural convection


Natural convection, or free convection, occurs due to temperature differences which affect the density, and thus relative buoyancy, of the fluid. Heavier (more dense) components will fall, while lighter (less dense) components rise, leading to bulk fluid movement. Natural convection can only occur, therefore, in a gravitational field. A common example of natural convection is the rise of smoke from a fire. it can be seen in a pot of boiling water in which the hot and less-dense water on the bottom layer moves upwards in plumes, and the cool and more dense water near the top of the pot likewise sinks.

Natural convection will be more likely and/or more rapid with a greater variation in density between the two fluids, a larger acceleration due to gravity that drives the convection, and/or a larger distance through the convecting medium. Natural convection will be less likely and/or less rapid with more rapid diffusion (thereby diffusing away the thermal gradient that is causing the convection) and/or a more viscous (sticky) fluid.

The onset of natural convection can be determined by the Rayleigh number
Rayleigh number
In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven flow...

 (Ra).

Note that differences in buoyancy within a fluid can arise for reasons other than temperature variations, in which case the fluid motion is called gravitational convection (see below). However, all types of buoyant convection, including natural convection, do not occur in microgravity environments. All require the presence of an environment which experiences g-force
G-force
The g-force associated with an object is its acceleration relative to free-fall. This acceleration experienced by an object is due to the vector sum of non-gravitational forces acting on an object free to move. The accelerations that are not produced by gravity are termed proper accelerations, and...

 (proper acceleration
Proper acceleration
In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured...

).

Forced convection


In forced convection, also called heat advection, fluid movement results from external surface forces such as a fan or pump. Forced convection is typically used to increase the rate of heat exchange. Many types of mixing
Mixing (process engineering)
In industrial process engineering, mixing is a unit operation that involves manipulating a heterogeneous physical system, with the intent to make it more homogeneous...

 also utilize forced convection to distribute one substance within another. Forced convection also occurs as a by-product to other processes, such as the action of a propeller in a fluid or aerodynamic heating
Aerodynamic heating
Aerodynamic heating is the heating of a solid body produced by the passage of fluid over a body such as a meteor, missile, or airplane. It is a form of forced convection in that the flow field is created by forces beyond those associated with the thermal processes...

. Fluid radiator systems, and also heating and cooling of parts of the body by blood circulation, are other familiar examples of forced convection.

Forced convection may happen by natural means, such as when the heat of a fire causes expansion of air and bulk air flow by this means. In microgravity, such flow (which happens in all directions) along with diffusion is the only means by which fires are able to draw in fresh oxygen to maintain themselves. The shock wave that transfers heat and mass out of explosions is also a type of forced convection.

Although forced convection from thermal gas expansion in zero-g does not fuel a fire as well as natural convection in a gravity field, some types of artificial forced convection are far more efficient than free convection, as they are not limited by natural mechanisms. For instance, a convection oven
Convection oven
Although the word convection is usually used to describe the natural circulation of gas or liquid caused by temperature differences, the convection in "convection oven" has a more general definition: the transfer of heat via movement of gas or liquid...

 works by forced convection, as a fan which rapidly circulates hot air forces heat into food faster than would naturally happen due to simple heating without the fan.

Gravitational or buoyant convection


Gravitational convection is a type of natural convection induced by buoyancy variations resulting from material properties other than temperature. Typically this is caused by a variable composition of the fluid. If the varying property is a concentration gradient, it is known as solutal convection. For example, gravitational convection can be seen in the diffusion of a source of dry salt downward into wet soil due to the buoyancy of fresh water in saline.

Variable salinity
Salinity
Salinity is the saltiness or dissolved salt content of a body of water. It is a general term used to describe the levels of different salts such as sodium chloride, magnesium and calcium sulfates, and bicarbonates...

 in water and variable water content in air masses are frequent causes of convection in the oceans and atmosphere which do not involve heat, or else involve additional compositional density factors other than the density changes from thermal expansion (see thermohaline circulation
Thermohaline circulation
The term thermohaline circulation refers to a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes....

). Similarly, variable composition within the Earth's interior which has not yet achieved maximal stability and minimal energy (in other words, with densest parts deepest) continues to cause a fraction of the convection of fluid rock and molten metal within the Earth's interior (see below).

Gravitational convection, like natural thermal convection, also requires a g-force
G-force
The g-force associated with an object is its acceleration relative to free-fall. This acceleration experienced by an object is due to the vector sum of non-gravitational forces acting on an object free to move. The accelerations that are not produced by gravity are termed proper accelerations, and...

 environment in order to occur.

Granular convection


Vibration-induced convection occurs in powders and granulated materials in containers subject to vibration where an axis of vibration is parallel to the force of gravity. When the container accelerates upward, the bottom of the container pushes the entire contents upward. In contrast, when the container accelerates downward, the sides of the container push the adjacent material downward by friction, but the material more remote from the sides is less affected. The net result is a slow circulation of particles downward at the sides, and upward in the middle.

If the container contains particles of different sizes, the downward-moving region at the sides is often narrower than the largest particles. Thus, larger particles tend to become sorted to the top of such a mixture. This is one possible explanation of the Brazil nut effect
Brazil nut effect
Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection...

.

Thermomagnetic convection



Thermomagnetic convection can occur when an external magnetic field is imposed on a ferrofluid
Ferrofluid
A ferrofluid is a liquid which becomes strongly magnetized in the presence of a magnetic field.Ferrofluids are colloidal liquids made of nanoscale ferromagnetic, or ferrimagnetic, particles suspended in a carrier fluid . Each tiny particle is thoroughly coated with a surfactant to inhibit clumping...

 with varying magnetic susceptibility
Magnetic susceptibility
In electromagnetism, the magnetic susceptibility \chi_m is a dimensionless proportionality constant that indicates the degree of magnetization of a material in response to an applied magnetic field...

. In the presence of a temperature gradient this results in a nonuniform magnetic body force, which leads to fluid movement. A ferrofluid is a liquid which becomes strongly magnetized in the presence of a magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

.

This form of heat transfer can be useful for cases where conventional convection fails to provide adequate heat transfer, e.g., in miniature microscale devices or under reduced gravity conditions.

Capillary action


Capillary action is a phenomenon where liquid spontaneously rises in a narrow space such as a thin tube, or in porous materials. This effect can cause liquids to flow against the force of gravity. It occurs because of inter-molecular attractive forces between the liquid and solid surrounding surfaces; If the diameter of the tube is sufficiently small, then the combination of surface tension and forces of adhesion between the liquid and container act to lift the liquid.

Marangoni effect



The Marangoni effect is the convection of fluid along an interface between dissimilar substances because of variations in surface tension. Surface tension can vary because of inhomogeneous composition of the substances, and/or the temperature-dependence of surface tension forces. In the latter case the effect is known as thermo-capillary convection.

A well-known phenomenon exhibiting this type of convection is the "tears of wine
Tears of wine
The phenomenon called tears of wine is manifested as a ring of clear liquid, near the top of a glass of wine, from which droplets continuously form and drop back into the wine. It is most readily observed in a wine which has a high alcohol content...

".

Weissenberg effect


The Weissenberg effect is a phenomenon that occurs when a spinning rod is placed into a solution of liquid polymer
Polymer
A polymer is a large molecule composed of repeating structural units. These subunits are typically connected by covalent chemical bonds...

. Entanglements cause the polymer chains to be drawn towards the rod instead of being thrown outward as would happen with an ordinary fluid (i.e., water).

Combustion


In a zero-gravity environment, there can be no buoyancy forces, and thus no natural (free) convection possible, so flames in many circumstances without gravity smother in their own waste gases. However, flames may be maintained with any type of forced convection (breeze); or (in high oxygen environments in "still" gas environments) entirely from the minimal forced convection that occurs as heat-induced expansion (not buoyancy) of gases allows for ventilation of the flame, as waste gases move outward and cool, and fresh high-oxygen gas moves in to take up the low pressure zones created when flame-exhaust water condenses.

Mathematical models of convection


Mathematically, convection can be described by the convection–diffusion equation
Convection–diffusion equation
The convection–diffusion equation is a parabolic partial differential equation combining the diffusion equation and the advection equation, which describes...

 or the generic scalar transport equation
Generic scalar transport equation
The generic scalar transport equation is a general partial differential equation that describes transport phenomena such as heat transfer, mass transfer, fluid dynamics , etc. A general form of the equation is \big...

.

Quantifying natural versus forced convection


In cases of mixed convection (natural and forced occurring together) one would often like to know how much of the convection is due to external constraints, such as the fluid velocity in the pump, and how much is due to natural convection occurring in the system.

The relative magnitudes of the Grashof and Reynolds number squared determine which form of convection dominates. if forced convection may be neglected, whereas if natural convection may be neglected. If the ratio is approximately one, then both forced and natural convection need to be taken into account.

See also

  • Atmospheric convection
    Atmospheric convection
    Atmospheric convection is the result of a parcel-environment instability, or temperature difference, layer in the atmosphere. Different lapse rates within dry and moist air lead to instability. Mixing of air during the day which expands the height of the planetary boundary layer leads to...

  • Bénard cells
  • Churchill-Bernstein Equation
    Churchill-Bernstein Equation
    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for...

  • Double diffusive convection
    Double diffusive convection
    Double-diffusive convection is an important fluid dynamics topic that describes a form of convection driven by two different density gradients which have different rates of diffusion.Convection in fluids is driven by density variation within them...

  • Fluid dynamics
    Fluid dynamics
    In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the natural science of fluids in motion. It has several subdisciplines itself, including aerodynamics and hydrodynamics...

  • Heat transfer
    Heat transfer
    Heat transfer is a discipline of thermal engineering that concerns the exchange of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer...

    • Heat conduction
      Heat conduction
      In heat transfer, conduction is a mode of transfer of energy within and between bodies of matter, due to a temperature gradient. Conduction means collisional and diffusive transfer of kinetic energy of particles of ponderable matter . Conduction takes place in all forms of ponderable matter, viz....

    • Thermal radiation
      Thermal radiation
      Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation....

  • Heat pipe
    Heat pipe
    A heat pipe or heat pin is a heat-transfer device that combines the principles of both thermal conductivity and phase transition to efficiently manage the transfer of heat between two solid interfaces....

  • Laser-heated pedestal growth
    Laser-heated pedestal growth
    Laser-heated pedestal growth is a crystal growth technique. The technique can be viewed as a miniature floating zone, where the heat source is replaced by a powerful CO2 or YAG laser...

  • Nusselt number
    Nusselt number
    In heat transfer at a boundary within a fluid, the Nusselt number is the ratio of convective to conductive heat transfer across the boundary. Named after Wilhelm Nusselt, it is a dimensionless number...

  • Thermomagnetic convection
    Thermomagnetic convection
    Ferrofluids can be used to transfer heat, since heat and mass transport in such magnetic fluids can be controlled using an external magnetic field.B. A...

  • Vortex tube
    Vortex tube
    The vortex tube, also known as the Ranque-Hilsch vortex tube, is a mechanical device that separates a compressed gas into hot and cold streams. It has no moving parts....


External links