Strong interaction

Strong interaction

Overview
In particle physics
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...

, the strong interaction (also called the strong force, strong nuclear force, or color force) is one of the four fundamental interaction
Fundamental interaction
In particle physics, fundamental interactions are the ways that elementary particles interact with one another...

s of nature, the others being electromagnetism
Electromagnetism
Electromagnetism is one of the four fundamental interactions in nature. The other three are the strong interaction, the weak interaction and gravitation...

, the weak interaction
Weak interaction
Weak interaction , is one of the four fundamental forces of nature, alongside the strong nuclear force, electromagnetism, and gravity. It is responsible for the radioactive decay of subatomic particles and initiates the process known as hydrogen fusion in stars...

 and gravitation
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

. As with the other fundamental interactions, it is a non-contact force
Non-contact force
A non-contact force is a force applied to an object by another body that is not in direct contact with it. The most familiar example of a non-contact force is gravity. In contrast a contact force is a force applied to a body by another body that is in contact with it...

. At atomic scale, it is about 100 times stronger than electromagnetism, which in turn is orders of magnitude
Order of magnitude
An order of magnitude is the class of scale or magnitude of any amount, where each class contains values of a fixed ratio to the class preceding it. In its most common usage, the amount being scaled is 10 and the scale is the exponent being applied to this amount...

 stronger than the weak force interaction and gravitation.

The strong interaction is observable in two areas: on a larger scale (about 1 to 3 femtometers), it is the force that binds proton
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

s and neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

s together to form the nucleus
Atomic nucleus
The nucleus is the very dense region consisting of protons and neutrons at the center of an atom. It was discovered in 1911, as a result of Ernest Rutherford's interpretation of the famous 1909 Rutherford experiment performed by Hans Geiger and Ernest Marsden, under the direction of Rutherford. The...

 of an atom
Atom
The atom is a basic unit of matter that consists of a dense central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons...

.
Discussion
Ask a question about 'Strong interaction'
Start a new discussion about 'Strong interaction'
Answer questions from other users
Full Discussion Forum
 
Recent Discussions
Encyclopedia
In particle physics
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...

, the strong interaction (also called the strong force, strong nuclear force, or color force) is one of the four fundamental interaction
Fundamental interaction
In particle physics, fundamental interactions are the ways that elementary particles interact with one another...

s of nature, the others being electromagnetism
Electromagnetism
Electromagnetism is one of the four fundamental interactions in nature. The other three are the strong interaction, the weak interaction and gravitation...

, the weak interaction
Weak interaction
Weak interaction , is one of the four fundamental forces of nature, alongside the strong nuclear force, electromagnetism, and gravity. It is responsible for the radioactive decay of subatomic particles and initiates the process known as hydrogen fusion in stars...

 and gravitation
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

. As with the other fundamental interactions, it is a non-contact force
Non-contact force
A non-contact force is a force applied to an object by another body that is not in direct contact with it. The most familiar example of a non-contact force is gravity. In contrast a contact force is a force applied to a body by another body that is in contact with it...

. At atomic scale, it is about 100 times stronger than electromagnetism, which in turn is orders of magnitude
Order of magnitude
An order of magnitude is the class of scale or magnitude of any amount, where each class contains values of a fixed ratio to the class preceding it. In its most common usage, the amount being scaled is 10 and the scale is the exponent being applied to this amount...

 stronger than the weak force interaction and gravitation.

The strong interaction is observable in two areas: on a larger scale (about 1 to 3 femtometers), it is the force that binds proton
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

s and neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

s together to form the nucleus
Atomic nucleus
The nucleus is the very dense region consisting of protons and neutrons at the center of an atom. It was discovered in 1911, as a result of Ernest Rutherford's interpretation of the famous 1909 Rutherford experiment performed by Hans Geiger and Ernest Marsden, under the direction of Rutherford. The...

 of an atom
Atom
The atom is a basic unit of matter that consists of a dense central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons...

. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is also the force (carried by gluon
Gluon
Gluons are elementary particles which act as the exchange particles for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles....

s) that holds quark
Quark
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly...

s together to form protons, neutrons and other hadron
Hadron
In particle physics, a hadron is a composite particle made of quarks held together by the strong force...

 particles.

In the context of binding protons and neutrons (nucleons) together to form atoms, the strong interaction is called the nuclear force
Nuclear force
The nuclear force is the force between two or more nucleons. It is responsible for binding of protons and neutrons into atomic nuclei. The energy released causes the masses of nuclei to be less than the total mass of the protons and neutrons which form them...

 (or residual strong force). In this case, it is the residuum of the strong interaction between the quarks that make up the protons and neutrons. As such, the residual strong interaction obeys a quite different distance-dependent behavior between nucleons, from when it is acting to bind quarks within nucleons.

The strong interaction is thought to be mediated by gluons, acting upon quarks, antiquarks
Antiparticle
Corresponding to most kinds of particles, there is an associated antiparticle with the same mass and opposite electric charge. For example, the antiparticle of the electron is the positively charged antielectron, or positron, which is produced naturally in certain types of radioactive decay.The...

, and other gluons. Gluons, in turn, are thought to interact with quarks and gluons because all carry a type of charge called "color charge." Color charge is analogous to electromagnetic charge, but it comes in three types not two, and it results in a different type of force, with different rules of behavior. These rules are detailed in the theory of quantum chromodynamics
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...

 (QCD), which is the theory of quark-gluon interactions.

History


Before the 1970s, physicists were uncertain about the binding mechanism of the atomic nucleus. It was known that the nucleus was composed of proton
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

s and neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

s and that protons possessed positive electric charge
Electric charge
Electric charge is a physical property of matter that causes it to experience a force when near other electrically charged matter. Electric charge comes in two types, called positive and negative. Two positively charged substances, or objects, experience a mutual repulsive force, as do two...

 while neutrons were electrically neutral. However, these facts seemed to contradict one another. By physical understanding at that time, positive charges would repel one another and the nucleus should therefore fly apart. However, this was never observed. New physics was needed to explain this phenomenon.

A stronger attractive force was postulated to explain how the atomic nucleus was bound together despite the protons' mutual electromagnetic repulsion. This hypothesized force was called the strong force, which was believed to be a fundamental force that acted on the nucleon
Nucleon
In physics, a nucleon is a collective name for two particles: the neutron and the proton. These are the two constituents of the atomic nucleus. Until the 1960s, the nucleons were thought to be elementary particles...

s (the protons and neutrons that make up the nucleus). Experiments suggested that this force bound protons and neutrons together with equal strength.

It was later discovered that protons and neutrons were not fundamental particles, but were made up of constituent particles called quark
Quark
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly...

s. The strong attraction between nucleons was the side-effect of a more fundamental force that bound the quarks together in the protons and neutrons. The theory of quantum chromodynamics
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...

 explains that quarks carry what is called a color charge
Color charge
In particle physics, color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics . Color charge has analogies with the notion of electric charge of particles, but because of the mathematical complications of QCD,...

, although it has no relation to visible color. Quarks with unlike color charge attract one another as a result of the strong interaction, which is mediated by particles called gluon
Gluon
Gluons are elementary particles which act as the exchange particles for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles....

s.

Details


The word strong is used since the strong interaction is the "strongest" of the four fundamental forces; its strength is 100 times that of the electromagnetic force, some 106 times as great as that of the weak force, and about 1039 times that of gravitation
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

.

The behaviour of the strong force


The contemporary strong force is described by quantum chromodynamics
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...

 (QCD), a part of the standard model
Standard Model
The Standard Model of particle physics is a theory concerning the electromagnetic, weak, and strong nuclear interactions, which mediate the dynamics of the known subatomic particles. Developed throughout the mid to late 20th century, the current formulation was finalized in the mid 1970s upon...

 of particle physics. Mathematically, QCD is a non-Abelian gauge theory
Gauge theory
In physics, gauge invariance is the property of a field theory in which different configurations of the underlying fundamental but unobservable fields result in identical observable quantities. A theory with such a property is called a gauge theory...

 based on a local (gauge) symmetry group
Symmetry group
The symmetry group of an object is the group of all isometries under which it is invariant with composition as the operation...

 called SU(3).

Quarks and gluons are the only fundamental particles which carry non-vanishing colour charge, and hence participate in strong interactions. The strong force itself acts directly only upon elementary quark and gluon particles.

All quarks and gluons in QCD interact with each other through the strong force. The strength of interaction is parametrized by the strong coupling constant
Coupling constant
In physics, a coupling constant, usually denoted g, is a number that determines the strength of an interaction. Usually the Lagrangian or the Hamiltonian of a system can be separated into a kinetic part and an interaction part...

. This strength is modified by the gauge color charge of the particle, a group theoretical
Group theory
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and...

 property.

The strong force acts between quarks. Unlike all other forces (electromagnetic, weak, and gravitational), the strong force does not diminish in strength with increasing distance. After a limiting distance (about the size of a hadron
Hadron
In particle physics, a hadron is a composite particle made of quarks held together by the strong force...

) has been reached, it remains at a strength of about 10,000 newtons, no matter how much further the distance between the quarks. In QCD this phenomenon is called color confinement; it implies that only hadrons, not individual free quarks, can be observed. The explanation is that the amount of work done against a force of 10,000 newtons (about the weight of a one-metric ton mass on the surface of the Earth) is enough to create particle-antiparticle pairs within a very short distance of an interaction. In simple terms, the very energy applied to pull two quarks apart will turn into new quarks that pair up again with the original ones. The failure of all experiments that have searched for free quarks is considered to be evidence for this phenomenon.

The elementary quark and gluon particles affected are unobservable directly, but instead emerge as jets of newly created hadrons, whenever energy is deposited into a quark-quark bond, as when a quark in a proton is struck by a very fast quark (in an impacting proton) during a particle accelerator
Particle accelerator
A particle accelerator is a device that uses electromagnetic fields to propel charged particles to high speeds and to contain them in well-defined beams. An ordinary CRT television set is a simple form of accelerator. There are two basic types: electrostatic and oscillating field accelerators.In...

 experiment. However, quark-gluon plasma
Quark-gluon plasma
A quark–gluon plasma or quark soup is a phase of quantum chromodynamics which exists at extremely high temperature and/or density. This phase consists of asymptotically free quarks and gluons, which are several of the basic building blocks of matter...

s have been observed.

Residual strong force


The residual effect of the strong force is called the nuclear force
Nuclear force
The nuclear force is the force between two or more nucleons. It is responsible for binding of protons and neutrons into atomic nuclei. The energy released causes the masses of nuclei to be less than the total mass of the protons and neutrons which form them...

. The nuclear force acts between hadron
Hadron
In particle physics, a hadron is a composite particle made of quarks held together by the strong force...

s, such as nucleon
Nucleon
In physics, a nucleon is a collective name for two particles: the neutron and the proton. These are the two constituents of the atomic nucleus. Until the 1960s, the nucleons were thought to be elementary particles...

s in atomic nuclei. This "residual strong force", acting indirectly, transmits gluons that form part of the virtual pi
Pion
In particle physics, a pion is any of three subatomic particles: , , and . Pions are the lightest mesons and they play an important role in explaining the low-energy properties of the strong nuclear force....

 and rho
Rho meson
In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as , and . After the pions and kaons, the rho mesons are the lightest strongly interacting particle with a mass of roughly for all three states...

 meson
Meson
In particle physics, mesons are subatomic particles composed of one quark and one antiquark, bound together by the strong interaction. Because mesons are composed of sub-particles, they have a physical size, with a radius roughly one femtometer: 10−15 m, which is about the size of a proton...

s, which, in turn, transmit the nuclear force between nucleons.

The residual strong force is thus a minor residuum of the strong force which binds quarks together into protons and neutrons. This same force is much weaker between neutrons and protons, because it is mostly neutralized within them, in the same way that electromagnetic forces between neutral atoms (van der Waals force
Van der Waals force
In physical chemistry, the van der Waals force , named after Dutch scientist Johannes Diderik van der Waals, is the sum of the attractive or repulsive forces between molecules other than those due to covalent bonds or to the electrostatic interaction of ions with one another or with neutral...

s) are much weaker than the electromagnetic forces that hold the atoms internally together.

Unlike the strong force itself, the nuclear force
Nuclear force
The nuclear force is the force between two or more nucleons. It is responsible for binding of protons and neutrons into atomic nuclei. The energy released causes the masses of nuclei to be less than the total mass of the protons and neutrons which form them...

, or residual strong force, does diminish in strength, and in fact diminishes strongly with distance. The decrease is approximately as a negative exponential power of distance, though there is no simple expression known for this; see Yukawa potential. This fact, together with the less-rapid decrease of the disruptive electromagnetic force between protons with distance, causes the instability of larger atomic nuclei, such as all those with atomic number
Atomic number
In chemistry and physics, the atomic number is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element...

s larger than 82 (Lead
Lead
Lead is a main-group element in the carbon group with the symbol Pb and atomic number 82. Lead is a soft, malleable poor metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed...

).

See also

  • Nuclear binding energy
    Nuclear binding energy
    Nuclear binding energy is the energy required to split a nucleus of an atom into its component parts. The component parts are neutrons and protons, which are collectively called nucleons...

  • Color charge
    Color charge
    In particle physics, color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics . Color charge has analogies with the notion of electric charge of particles, but because of the mathematical complications of QCD,...

  • Coupling constant
    Coupling constant
    In physics, a coupling constant, usually denoted g, is a number that determines the strength of an interaction. Usually the Lagrangian or the Hamiltonian of a system can be separated into a kinetic part and an interaction part...

  • Nuclear physics
    Nuclear physics
    Nuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those...

  • QCD matter
    QCD matter
    Quark matter or QCD matter refers to any of a number of theorized phases of matter whose degrees of freedom include quarks and gluons. These theoretical phases would occur at extremely high temperatures and densities, billions of times higher than can be produced in equilibrium in laboratories...

  • Quantum field theory
    Quantum field theory
    Quantum field theory provides a theoretical framework for constructing quantum mechanical models of systems classically parametrized by an infinite number of dynamical degrees of freedom, that is, fields and many-body systems. It is the natural and quantitative language of particle physics and...

     and Gauge theory
    Gauge theory
    In physics, gauge invariance is the property of a field theory in which different configurations of the underlying fundamental but unobservable fields result in identical observable quantities. A theory with such a property is called a gauge theory...

  • Standard model
    Standard Model
    The Standard Model of particle physics is a theory concerning the electromagnetic, weak, and strong nuclear interactions, which mediate the dynamics of the known subatomic particles. Developed throughout the mid to late 20th century, the current formulation was finalized in the mid 1970s upon...

     of particle physics and Standard Model (mathematical formulation)
  • Weak interaction
    Weak interaction
    Weak interaction , is one of the four fundamental forces of nature, alongside the strong nuclear force, electromagnetism, and gravity. It is responsible for the radioactive decay of subatomic particles and initiates the process known as hydrogen fusion in stars...

    , electromagnetism
    Electromagnetism
    Electromagnetism is one of the four fundamental interactions in nature. The other three are the strong interaction, the weak interaction and gravitation...

     and gravity
  • Intermolecular force
    Intermolecular force
    Intermolecular forces are forces of attraction or repulsion which act between neighboring particles: atoms, molecules or ions. They are weak compared to the intramolecular forces, the forces which keep a molecule together...