Cheng's eigenvalue comparison theorem
Encyclopedia
In Riemannian geometry
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point which varies smoothly from point to point. This gives, in particular, local notions of angle, length...

, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue
Dirichlet eigenvalue
In mathematics, the Dirichlet eigenvalues are the fundamental modes of vibration of an idealized drum with a given shape. The problem of whether one can hear the shape of a drum is: given the Dirichlet eigenvalues, what features of the shape of the drum can one deduce. Here a "drum" is thought of...

 of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "size" of the domain must also account for its curvature
Curvature
In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context...

. The theorem is due to . Using geodesic balls, it can be generalized to certain tubular domains .

Theorem

Let M be a Riemannian manifold
Riemannian manifold
In Riemannian geometry and the differential geometry of surfaces, a Riemannian manifold or Riemannian space is a real differentiable manifold M in which each tangent space is equipped with an inner product g, a Riemannian metric, which varies smoothly from point to point...

 with dimension n, and let BM(pr) be a geodesic ball centered at p with radius r less than the injectivity radius of p ∈ M. For each real number k, let N(k) denote the simply connected space form
Space form
In mathematics, a space form is a complete Riemannian manifold M of constant sectional curvature K. The three obvious examples are Euclidean n-space, the n-dimensional sphere, and hyperbolic space, although a space form need not be simply connected.-Reduction to generalized crystallography:It is a...

 of dimension n and constant sectional curvature
Sectional curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K depends on a two-dimensional plane σp in the tangent space at p...

 k. Cheng's eigenvalue comparison theorem compares the first eigenvalue λ1(BM(pr)) of the Dirichlet problem in BM(pr) with the first eigenvalue in BN(k)(r) for suitable values of k. There are two parts to the theorem:
  • Suppose that KM, the sectional curvature
    Sectional curvature
    In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K depends on a two-dimensional plane σp in the tangent space at p...

     of M, satisfies
Then


The second part is a comparison theorem for the Ricci curvature
Ricci curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume element of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space...

 of M:
  • Suppose that the Ricci curvature of M satisfies, for every vector field X,
Then, with the same notation as above,


S.Y. Cheng used Barta's theorem to derive the eigenvalue comparison theorem. As a special case, if k = −1 and inj(p) = ∞, Cheng’s inequality becomes λ*(N) ≥ λ*(H n(−1)) which is McKean’s inequality.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK