Brain

Brain

Overview
The brain is the center of the nervous system
Nervous system
The nervous system is an organ system containing a network of specialized cells called neurons that coordinate the actions of an animal and transmit signals between different parts of its body. In most animals the nervous system consists of two parts, central and peripheral. The central nervous...

 in all vertebrate
Vertebrate
Vertebrates are animals that are members of the subphylum Vertebrata . Vertebrates are the largest group of chordates, with currently about 58,000 species described. Vertebrates include the jawless fishes, bony fishes, sharks and rays, amphibians, reptiles, mammals, and birds...

 and most invertebrate
Invertebrate
An invertebrate is an animal without a backbone. The group includes 97% of all animal species – all animals except those in the chordate subphylum Vertebrata .Invertebrates form a paraphyletic group...

 animals—only a few primitive invertebrates such as sponges, jellyfish
Cnidaria
Cnidaria is a phylum containing over 9,000 species of animals found exclusively in aquatic and mostly marine environments. Their distinguishing feature is cnidocytes, specialized cells that they use mainly for capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance,...

, sea squirts and starfish
Echinoderm
Echinoderms are a phylum of marine animals. Echinoderms are found at every ocean depth, from the intertidal zone to the abyssal zone....

es do not have one. It is located in the head, usually close to primary sensory apparatus such as vision, hearing, balance, taste and smell. The brain of a vertebrate is the most complex organ in its body. In a typical human the cerebral cortex
Cerebral cortex
The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

 (the largest part) is estimated to contain 15–33 billion neuron
Neuron
A neuron is an electrically excitable cell that processes and transmits information by electrical and chemical signaling. Chemical signaling occurs via synapses, specialized connections with other cells. Neurons connect to each other to form networks. Neurons are the core components of the nervous...

s, each connected by synapse
Synapse
In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another cell...

s to several thousand other neurons.
Discussion
Ask a question about 'Brain'
Start a new discussion about 'Brain'
Answer questions from other users
Full Discussion Forum
 
Quotations

Brain, n. An apparatus with which we think we think.

Ambrose Bierce, The Devil's Dictionary

Do we trivialize a sublime feeling if we appreciate its dependence on the brain? Not in the least. Its significance does not depend on its being a soul state or a brain state...Humility bids us to take ourselves as we are; we do not have to be cosmically significant to be genuinely significant.

Brain-Wise by Patricia Churchland

"We do have an organ for understanding and recognizing moral facts. It is called the brain.

A Neurocomputational Perspective by Paul Churchland
Encyclopedia
The brain is the center of the nervous system
Nervous system
The nervous system is an organ system containing a network of specialized cells called neurons that coordinate the actions of an animal and transmit signals between different parts of its body. In most animals the nervous system consists of two parts, central and peripheral. The central nervous...

 in all vertebrate
Vertebrate
Vertebrates are animals that are members of the subphylum Vertebrata . Vertebrates are the largest group of chordates, with currently about 58,000 species described. Vertebrates include the jawless fishes, bony fishes, sharks and rays, amphibians, reptiles, mammals, and birds...

 and most invertebrate
Invertebrate
An invertebrate is an animal without a backbone. The group includes 97% of all animal species – all animals except those in the chordate subphylum Vertebrata .Invertebrates form a paraphyletic group...

 animals—only a few primitive invertebrates such as sponges, jellyfish
Cnidaria
Cnidaria is a phylum containing over 9,000 species of animals found exclusively in aquatic and mostly marine environments. Their distinguishing feature is cnidocytes, specialized cells that they use mainly for capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance,...

, sea squirts and starfish
Echinoderm
Echinoderms are a phylum of marine animals. Echinoderms are found at every ocean depth, from the intertidal zone to the abyssal zone....

es do not have one. It is located in the head, usually close to primary sensory apparatus such as vision, hearing, balance, taste and smell. The brain of a vertebrate is the most complex organ in its body. In a typical human the cerebral cortex
Cerebral cortex
The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

 (the largest part) is estimated to contain 15–33 billion neuron
Neuron
A neuron is an electrically excitable cell that processes and transmits information by electrical and chemical signaling. Chemical signaling occurs via synapses, specialized connections with other cells. Neurons connect to each other to form networks. Neurons are the core components of the nervous...

s, each connected by synapse
Synapse
In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another cell...

s to several thousand other neurons. These neurons communicate with one another by means of long protoplasm
Protoplasm
Protoplasm is the living contents of a cell that is surrounded by a plasma membrane. It is a general term of the Cytoplasm . Protoplasm is composed of a mixture of small molecules such as ions, amino acids, monosaccharides and water, and macromolecules such as nucleic acids, proteins, lipids and...

ic fibers called axon
Axon
An axon is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body or soma....

s, which carry trains of signal pulses called action potential
Action potential
In physiology, an action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and...

s to distant parts of the brain or body targeting specific recipient cells.

From an evolutionary-biological point of view, the function of the brain is to exert centralized control over the other organs of the body. The brain acts on the rest of the body either by generating patterns of muscle activity or by driving secretion of chemicals called hormone
Hormone
A hormone is a chemical released by a cell or a gland in one part of the body that sends out messages that affect cells in other parts of the organism. Only a small amount of hormone is required to alter cell metabolism. In essence, it is a chemical messenger that transports a signal from one...

s. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness such as reflex
Reflex
A reflex action, also known as a reflex, is an involuntary and nearly instantaneous movement in response to a stimulus. A true reflex is a behavior which is mediated via the reflex arc; this does not apply to casual uses of the term 'reflex'.-See also:...

es can be mediated by the spinal cord or peripheral ganglia
Ganglion
In anatomy, a ganglion is a biological tissue mass, most commonly a mass of nerve cell bodies. Cells found in a ganglion are called ganglion cells, though this term is also sometimes used to refer specifically to retinal ganglion cells....

, but sophisticated purposeful control of behavior based on complex sensory input requires the information-integrating capabilities of a centralized brain.

From a philosophical point of view, what makes the brain special in comparison to other organs is that it forms the physical structure that generates the mind
Mind
The concept of mind is understood in many different ways by many different traditions, ranging from panpsychism and animism to traditional and organized religious views, as well as secular and materialist philosophies. Most agree that minds are constituted by conscious experience and intelligent...

. As Hippocrates
Hippocrates
Hippocrates of Cos or Hippokrates of Kos was an ancient Greek physician of the Age of Pericles , and is considered one of the most outstanding figures in the history of medicine...

 put it: "Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations." In the early part of psychology, the mind was thought to be separate from the brain. However, after early scientists conducted experiments it was determined that the mind was a component of a functioning brain that expressed certain behaviours based on the external environment and the development of the organism. The mechanisms by which brain activity gives rise to consciousness and thought have been very challenging to understand: despite rapid scientific progress, much about how the brain works remains a mystery. The operations of individual brain cells are now understood in considerable detail, but the way they cooperate in ensembles of millions has been very difficult to decipher. The most promising approaches treat the brain as a biological computer, very different in mechanism from electronic computers, but similar in the sense that it acquires information from the surrounding world, stores it, and processes it in a variety of ways.

This article compares the properties of brains across the entire range of animal species, with the greatest attention to vertebrates. It deals with the human brain insofar as it shares the properties of other brains. The ways in which the human brain differs from other brains are covered in the human brain
Human brain
The human brain has the same general structure as the brains of other mammals, but is over three times larger than the brain of a typical mammal with an equivalent body size. Estimates for the number of neurons in the human brain range from 80 to 120 billion...

 article. Several topics that might be covered here are instead covered there because much more can be said about them in a human context. The most important is brain disease and the effects of brain damage, covered in the human brain
Human brain
The human brain has the same general structure as the brains of other mammals, but is over three times larger than the brain of a typical mammal with an equivalent body size. Estimates for the number of neurons in the human brain range from 80 to 120 billion...

 article because the most common diseases of the human brain either do not show up in other species, or else manifest themselves in different ways.

Anatomy



The shape and size of the brains of different species vary greatly, and identifying common features is often difficult. Nevertheless, there are a number of principles of brain architecture that apply across a wide range of species. Some aspects of brain structure are common to almost the entire range of animals species; others distinguish "advanced" brains from more primitive ones, or distinguish vertebrates from invertebrates.

The simplest way to gain information about brain anatomy is by visual inspection, but many more sophisticated techniques have been developed. Brain tissue in its natural state is too soft to work with, but it can be hardened by immersion in alcohol or other fixative
Fixation (histology)
In the fields of histology, pathology, and cell biology, fixation is a chemical process by which biological tissues are preserved from decay, thereby preventing autolysis or putrefaction...

s, and then sliced apart for examination of the interior. Visually, the interior of the brain consists of areas of so-called grey matter
Grey matter
Grey matter is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil , glial cells and capillaries. Grey matter contains neural cell bodies, in contrast to white matter, which does not and mostly contains myelinated axon tracts...

, with a dark color, separated by areas of white matter
White matter
White matter is one of the two components of the central nervous system and consists mostly of myelinated axons. White matter tissue of the freshly cut brain appears pinkish white to the naked eye because myelin is composed largely of lipid tissue veined with capillaries. Its white color is due to...

, with a lighter color. Further information can be gained by staining slices of brain tissue with a variety of chemicals that bring out areas where specific types of molecules are present in high concentrations. It is also possible to examine the microstructure of brain tissue using a microscope, and to trace the pattern of connections from one brain area to another.

Cellular structure


The brains of all species are composed primarily of two broad classes of cells: neuron
Neuron
A neuron is an electrically excitable cell that processes and transmits information by electrical and chemical signaling. Chemical signaling occurs via synapses, specialized connections with other cells. Neurons connect to each other to form networks. Neurons are the core components of the nervous...

s and glial cells. Glial cells (also known as glia or neuroglia) come in several types, and perform a number of critical functions, including structural support, metabolic support, insulation, and guidance of development. Neurons, however, are usually considered the most important cells in the brain.

The property that makes neurons unique is their ability to send signals to specific target cells over long distances. They send these signals by means of an axon
Axon
An axon is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body or soma....

, which is a thin protoplasmic fiber that extends from the cell body and projects, usually with numerous branches, to other areas, sometimes nearby, sometimes in distant parts of the brain or body. The length of an axon can be extraordinary: for example, if a pyramidal cell
Pyramidal cell
Pyramidal neurons are a type of neuron found in areas of the brain including cerebral cortex, the hippocampus, and in the amygdala. Pyramidal neurons are the primary excitation units of the mammalian prefrontal cortex and the corticospinal tract. Pyramidal neurons were first discovered and...

 of the cerebral cortex
Cerebral cortex
The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

 were magnified so that its cell body became the size of a human body, its axon, equally magnified, would become a cable a few centimeters in diameter, extending more than a kilometer. These axons transmit signals in the form of electrochemical pulses called action potential
Action potential
In physiology, an action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and...

s, which last less than a thousandth of a second and travel along the axon at speeds of 1–100 meters per second. Some neurons emit action potentials constantly, at rates of 10–100 per second, usually in irregular patterns; other neurons are quiet most of the time, but occasionally emit a burst of action potentials.

Axons transmit signals to other neurons by means of specialized junctions called synapse
Synapse
In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another cell...

s. A single axon may make as many as several thousand synaptic connections with other cells. When an action potential, traveling along an axon, arrives at a synapse, it causes a chemical called a neurotransmitter
Neurotransmitter
Neurotransmitters are endogenous chemicals that transmit signals from a neuron to a target cell across a synapse. Neurotransmitters are packaged into synaptic vesicles clustered beneath the membrane on the presynaptic side of a synapse, and are released into the synaptic cleft, where they bind to...

 to be released. The neurotransmitter binds to receptor
Receptor (biochemistry)
In biochemistry, a receptor is a molecule found on the surface of a cell, which receives specific chemical signals from neighbouring cells or the wider environment within an organism...

 molecules in the membrane of the target cell.
Synapses are the key functional elements of the brain. The essential function of the brain is cell-to-cell communication, and synapses are the points at which communication occurs. The human brain has been estimated to contain approximately 100 trillion synapses; even the brain of a fruit fly contains several million. The functions of these synapses are very diverse: some are excitatory (excite the target cell); others are inhibitory; others work by activating second messenger system
Second messenger system
Second messengers are molecules that relay signals from receptors on the cell surface to target molecules inside the cell, in the cytoplasm or nucleus. They relay the signals of hormones like epinephrine , growth factors, and others, and cause some kind of change in the activity of the cell...

s that change the internal chemistry of their target cells in complex ways. A large fraction of synapses are dynamically modifiable; that is, they are capable of changing strength in a way that is controlled by the patterns of signals that pass through them. It is widely believed that activity-dependent modification of synapses
Synaptic plasticity
In neuroscience, synaptic plasticity is the ability of the connection, or synapse, between two neurons to change in strength in response to either use or disuse of transmission over synaptic pathways. Plastic change also results from the alteration of the number of receptors located on a synapse...

 is the brain's primary mechanism for learning and memory.

Most of the space in the brain is taken up by axons, which are often bundled together in what are called nerve fiber tracts. Many axons are wrapped in thick sheaths of a fatty substance called myelin
Myelin
Myelin is a dielectric material that forms a layer, the myelin sheath, usually around only the axon of a neuron. It is essential for the proper functioning of the nervous system. Myelin is an outgrowth of a type of glial cell. The production of the myelin sheath is called myelination...

, which serves to greatly increase the speed of signal propagation. Myelin is white, so parts of the brain filled exclusively with nerve fibers appear as light-colored white matter
White matter
White matter is one of the two components of the central nervous system and consists mostly of myelinated axons. White matter tissue of the freshly cut brain appears pinkish white to the naked eye because myelin is composed largely of lipid tissue veined with capillaries. Its white color is due to...

, in contrast to the darker-colored grey matter
Grey matter
Grey matter is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil , glial cells and capillaries. Grey matter contains neural cell bodies, in contrast to white matter, which does not and mostly contains myelinated axon tracts...

 that marks areas with high densities of neuron cell bodies.

The generic bilaterian nervous system



Except for a few primitive types such as sponges (which have no nervous system) and jellyfish
Jellyfish
Jellyfish are free-swimming members of the phylum Cnidaria. Medusa is another word for jellyfish, and refers to any free-swimming jellyfish stages in the phylum Cnidaria...

 (which have a nervous system consisting of a diffuse nerve net), all living animals are bilateria
Bilateria
The bilateria are all animals having a bilateral symmetry, i.e. they have a front and a back end, as well as an upside and downside. Radially symmetrical animals like jellyfish have a topside and downside, but no front and back...

ns, meaning animals with a bilaterally symmetric body shape (that is, left and right sides that are approximate mirror images of each other). All bilaterians are thought to have descended from a common ancestor that appeared early in the Cambrian
Cambrian
The Cambrian is the first geological period of the Paleozoic Era, lasting from Mya ; it is succeeded by the Ordovician. Its subdivisions, and indeed its base, are somewhat in flux. The period was established by Adam Sedgwick, who named it after Cambria, the Latin name for Wales, where Britain's...

 period, 550–600 million years ago, which had the shape of a simple tubeworm with a segmented body. At a schematic level, that basic worm-shape continues to be reflected in the body and nervous system architecture of all modern bilaterians, including vertebrates. The fundamental bilateral body form is a tube with a hollow gut cavity running from the mouth to the anus, and a nerve cord with an enlargement (a ganglion
Ganglion
In anatomy, a ganglion is a biological tissue mass, most commonly a mass of nerve cell bodies. Cells found in a ganglion are called ganglion cells, though this term is also sometimes used to refer specifically to retinal ganglion cells....

) for each body segment, with an especially large ganglion at the front, called the brain. The brain is small and simple in some species, such as nematode
Nematode
The nematodes or roundworms are the most diverse phylum of pseudocoelomates, and one of the most diverse of all animals. Nematode species are very difficult to distinguish; over 28,000 have been described, of which over 16,000 are parasitic. It has been estimated that the total number of nematode...

 worms; in other species, including vertebrates, it is the most complex organ in the body. Some types of worms, such as leech
Leech
Leeches are segmented worms that belong to the phylum Annelida and comprise the subclass Hirudinea. Like other oligochaetes such as earthworms, leeches share a clitellum and are hermaphrodites. Nevertheless, they differ from other oligochaetes in significant ways...

es, also have an enlarged ganglion at the back end of the nerve cord, known as a "tail brain".

There are a few types of existing bilaterians that lack a recognizable brain, including echinoderm
Echinoderm
Echinoderms are a phylum of marine animals. Echinoderms are found at every ocean depth, from the intertidal zone to the abyssal zone....

s, tunicate
Tunicate
Tunicates, also known as urochordates, are members of the subphylum Tunicata, previously known as Urochordata, a group of underwater saclike filter feeders with incurrent and excurrent siphons that is classified within the phylum Chordata. While most tunicates live on the ocean floor, others such...

s, and a group of primitive flatworms called Acoelomorpha
Acoelomorpha
The Acoelomorpha are a disputed phylum of animals with planula-like features that were considered to belong to the phylum Platyhelminthes. In 2004 molecular studies demonstrated that they are a separate phylum, although their position in the tree of life is contentious; most researchers believe...

. It has not been definitively established whether the existence of these brainless species indicates that the earliest bilaterians lacked a brain, or whether their ancestors evolved in a way that led to the disappearance of a previously existing brain structure.

Invertebrates



This category includes arthropods, molluscs, and numerous types of worms. The diversity of invertebrate body plans is matched by an equal diversity in brain structures.

Two groups of invertebrates have notably complex brains: arthropod
Arthropod
An arthropod is an invertebrate animal having an exoskeleton , a segmented body, and jointed appendages. Arthropods are members of the phylum Arthropoda , and include the insects, arachnids, crustaceans, and others...

s (insect
Insect
Insects are a class of living creatures within the arthropods that have a chitinous exoskeleton, a three-part body , three pairs of jointed legs, compound eyes, and two antennae...

s, crustacean
Crustacean
Crustaceans form a very large group of arthropods, usually treated as a subphylum, which includes such familiar animals as crabs, lobsters, crayfish, shrimp, krill and barnacles. The 50,000 described species range in size from Stygotantulus stocki at , to the Japanese spider crab with a leg span...

s, arachnid
Arachnid
Arachnids are a class of joint-legged invertebrate animals in the subphylum Chelicerata. All arachnids have eight legs, although in some species the front pair may convert to a sensory function. The term is derived from the Greek words , meaning "spider".Almost all extant arachnids are terrestrial...

s, and others), and cephalopod
Cephalopod
A cephalopod is any member of the molluscan class Cephalopoda . These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot...

s (octopus
Octopus
The octopus is a cephalopod mollusc of the order Octopoda. Octopuses have two eyes and four pairs of arms, and like other cephalopods they are bilaterally symmetric. An octopus has a hard beak, with its mouth at the center point of the arms...

es, squid
Squid
Squid are cephalopods of the order Teuthida, which comprises around 300 species. Like all other cephalopods, squid have a distinct head, bilateral symmetry, a mantle, and arms. Squid, like cuttlefish, have eight arms arranged in pairs and two, usually longer, tentacles...

s, and similar mollusc
Mollusca
The Mollusca , common name molluscs or mollusksSpelled mollusks in the USA, see reasons given in Rosenberg's ; for the spelling mollusc see the reasons given by , is a large phylum of invertebrate animals. There are around 85,000 recognized extant species of molluscs. Mollusca is the largest...

s). The brains of arthropods and cephalopods arise from twin parallel nerve cords that extend through the body of the animal. Arthropods have a central brain with three divisions and large optical lobes behind each eye for visual processing. Cephalopods such as the octopus
Octopus
The octopus is a cephalopod mollusc of the order Octopoda. Octopuses have two eyes and four pairs of arms, and like other cephalopods they are bilaterally symmetric. An octopus has a hard beak, with its mouth at the center point of the arms...

 and squid
Squid
Squid are cephalopods of the order Teuthida, which comprises around 300 species. Like all other cephalopods, squid have a distinct head, bilateral symmetry, a mantle, and arms. Squid, like cuttlefish, have eight arms arranged in pairs and two, usually longer, tentacles...

 have the largest brains of any invertebrates.

There are several invertebrate species whose brains have been studied intensively because they have properties that make them convenient for experimental work:
  • Fruit flies (Drosophila
    Drosophila
    Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose members are often called "fruit flies" or more appropriately pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit...

    ), because of the large array of techniques available for studying their genetics, have been a natural subject for studying the role of genes in brain development. In spite of the large evolutionary distance between insects and mammals, many aspects of Drosophila neurogenetics have turned out to be relevant to humans. The first biological clock genes, for example, were identified by examining Drosophila mutants that showed disrupted daily activity cycles. A search in the genomes of vertebrates turned up a set of analogous genes, which were found to play similar roles in the mouse biological clock—and therefore almost certainly in the human biological clock as well.

  • The nematode worm Caenorhabditis elegans
    Caenorhabditis elegans
    Caenorhabditis elegans is a free-living, transparent nematode , about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been used extensively as a model...

    , like Drosophila, has been studied largely because of its importance in genetics. In the early 1970s, Sydney Brenner
    Sydney Brenner
    Sydney Brenner, CH FRS is a South African biologist and a 2002 Nobel prize in Physiology or Medicine laureate, shared with H...

     chose it as a model system
    Scientific modelling
    Scientific modelling is the process of generating abstract, conceptual, graphical and/or mathematical models. Science offers a growing collection of methods, techniques and theory about all kinds of specialized scientific modelling...

     for studying the way that genes control development. One of the advantages of working with this worm is that the body plan is very stereotyped: the nervous system of the hermaphrodite
    Hermaphrodite
    In biology, a hermaphrodite is an organism that has reproductive organs normally associated with both male and female sexes.Many taxonomic groups of animals do not have separate sexes. In these groups, hermaphroditism is a normal condition, enabling a form of sexual reproduction in which both...

     morph contains exactly 302 neurons, always in the same places, making identical synaptic connections in every worm. Brenner's team sliced worms into thousands of ultrathin sections and photographed every section under an electron microscope, then visually matched fibers from section to section, to map out every neuron and synapse in the entire body. Nothing approaching this level of detail is available for any other organism, and the information has been used to enable a multitude of studies that would not have been possible without it.

  • The sea slug Aplysia
    Aplysia
    Aplysia is a genus of medium-sized to extremely large sea slugs, specifically sea hares, which are one clade of large sea slugs, marine gastropod mollusks. The general description of sea hares can be found in the article on the superfamily Aplysioidea....

    was chosen by Nobel Prize-winning neurophysiologist Eric Kandel as a model for studying the cellular basis of learning
    Learning
    Learning is acquiring new or modifying existing knowledge, behaviors, skills, values, or preferences and may involve synthesizing different types of information. The ability to learn is possessed by humans, animals and some machines. Progress over time tends to follow learning curves.Human learning...

     and memory, because of the simplicity and accessibility of its nervous system, and it has been examined in hundreds of experiments.

Vertebrates



The first vertebrate
Vertebrate
Vertebrates are animals that are members of the subphylum Vertebrata . Vertebrates are the largest group of chordates, with currently about 58,000 species described. Vertebrates include the jawless fishes, bony fishes, sharks and rays, amphibians, reptiles, mammals, and birds...

s appeared over 500 million years ago (Mya), during the Cambrian period, and may have resembled the modern hagfish
Hagfish
Hagfish, the clade Myxini , are eel-shaped slime-producing marine animals . They are the only living animals that have a skull but not a vertebral column. Along with lampreys, hagfish are jawless and are living fossils whose next nearest relatives include all vertebrates...

 in form. Sharks appeared about 450 Mya, amphibians about 400 Mya, reptiles about 350 Mya, and mammals about 200 Mya. No modern species should be described as more "primitive" than others, strictly speaking, since each has an equally long evolutionary history
Evolution
Evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level of biological organisation, including species, individual organisms and molecules such as DNA and proteins.Life on Earth...

—but the brains of modern hagfishes, lamprey
Lamprey
Lampreys are a family of jawless fish, whose adults are characterized by a toothed, funnel-like sucking mouth. Translated from an admixture of Latin and Greek, lamprey means stone lickers...

s, sharks, amphibians, reptiles, and mammals show a gradient of size and complexity that roughly follows the evolutionary sequence. All of these brains contain the same set of basic anatomical components, but many are rudimentary in the hagfish, whereas in mammals the foremost part (the telencephalon) is greatly elaborated and expanded.

Brains are most simply compared in terms of their size. The relationship between brain size
Brain size
Brain size is one aspect of animal anatomy and evolution. Both overall brain size and the size of substructures have been analysed, and the question of links between size and functioning - particularly intelligence - has often proved controversial...

, body size and other variables has been studied across a wide range of vertebrate species. As a rule, brain size increases with body size, but not in a simple linear proportion. In general, smaller animals tend to have larger brains, measured as a fraction of body size: the animal with the largest brain-size-to-body-size ratio is the hummingbird. For mammals, the relationship between brain volume and body mass essentially follows a power law
Power law
A power law is a special kind of mathematical relationship between two quantities. When the frequency of an event varies as a power of some attribute of that event , the frequency is said to follow a power law. For instance, the number of cities having a certain population size is found to vary...

 with an exponent
Exponentiation
Exponentiation is a mathematical operation, written as an, involving two numbers, the base a and the exponent n...

 of about 0.75. This formula describes the central tendency, but every family of mammals departs from it to some degree, in a way that reflects in part the complexity of their behavior. For example, primates have brains 5 to 10 times larger than the formula predicts. Predators tend to have larger brains than their prey, relative to body size.


All vertebrate brains share a common underlying form, which appears most clearly during early stages of embryonic development. In its earliest form, the brain appears as three swellings at the front end of the neural tube
Neural tube
In the developing vertebrate, the neural tube is the embryo's precursor to the central nervous system, which comprises the brain and spinal cord...

; these swellings eventually become the forebrain, midbrain, and hindbrain (the prosencephalon
Prosencephalon
In the anatomy of the brain of vertebrates, the prosencephalon is the rostral-most portion of the brain. The prosencephalon, the mesencephalon , and rhombencephalon are the three primary portions of the brain during early development of the central nervous system...

, mesencephalon
Mesencephalon
The midbrain or mesencephalon is a portion of the central nervous system associated with vision, hearing, motor control, sleep/wake, arousal , and temperature regulation....

, and rhombencephalon
Rhombencephalon
The rhombencephalon is a developmental categorization of portions of the central nervous system in vertebrates.The rhombencephalon can be subdivided in a variable number of transversal swellings called rhombomeres...

, respectively). At the earliest stages of brain development, the three areas are roughly equal in size. In many classes of vertebrates, such as fish and amphibians, the three parts remain similar in size in the adult, but in mammals the forebrain becomes much larger than the other parts, and the midbrain becomes very small.

The brains of vertebrates are made of very soft tissue. Living brain tissue is pinkish on the outside and mostly white on the inside, with subtle variations in color. Vertebrate brains are surrounded by a system of connective tissue
Connective tissue
"Connective tissue" is a fibrous tissue. It is one of the four traditional classes of tissues . Connective Tissue is found throughout the body.In fact the whole framework of the skeleton and the different specialized connective tissues from the crown of the head to the toes determine the form of...

 membrane
Biological membrane
A biological membrane or biomembrane is an enclosing or separatingmembrane that acts as a selective barrier, within or around a cell. It consists of a lipid bilayer with embedded proteins that may constitute close to 50% of membrane content...

s called meninges
Meninges
The meninges is the system of membranes which envelopes the central nervous system. The meninges consist of three layers: the dura mater, the arachnoid mater, and the pia mater. The primary function of the meninges and of the cerebrospinal fluid is to protect the central nervous system.-Dura...

 that separate the skull from the brain. Blood vessel
Blood vessel
The blood vessels are the part of the circulatory system that transports blood throughout the body. There are three major types of blood vessels: the arteries, which carry the blood away from the heart; the capillaries, which enable the actual exchange of water and chemicals between the blood and...

s enter the central nervous system through holes in the meningeal layers. The cells in the blood vessel walls are joined tightly to one another, forming the so-called blood–brain barrier, which protects the brain from toxin
Toxin
A toxin is a poisonous substance produced within living cells or organisms; man-made substances created by artificial processes are thus excluded...

s that might enter through the bloodstream.

Neuroanatomists usually divide the vertebrate brain into six main regions: the telencephalon (cerebral hemispheres), diencephalon
Diencephalon
The diencephalon is the region of the vertebrate neural tube which gives rise to posterior forebrain structures. In development, the forebrain develops from the prosencephalon, the most anterior vesicle of the neural tube which later forms both the diencephalon and the...

 (thalamus and hypothalamus), mesencephalon (midbrain), cerebellum
Cerebellum
The cerebellum is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established...

, pons
Pons
The pons is a structure located on the brain stem, named after the Latin word for "bridge" or the 16th-century Italian anatomist and surgeon Costanzo Varolio . It is superior to the medulla oblongata, inferior to the midbrain, and ventral to the cerebellum. In humans and other bipeds this means it...

, and medulla oblongata
Medulla oblongata
The medulla oblongata is the lower half of the brainstem. In discussions of neurology and similar contexts where no ambiguity will result, it is often referred to as simply the medulla...

. Each of these areas has a complex internal structure. Some parts, such as the cerebral cortex and cerebellum, consist of layers that are folded or convoluted to fit within the available space. Other parts, such as the thalamus and hypothalamus, consist of clusters of many small nuclei. Thousands of distinguishable areas can be identified within the vertebrate brain based on fine distinctions of neural structure, chemistry, and connectivity.

Although the same basic components are present in all vertebrate brains, some branches of vertebrate evolution have led to substantial distortions of brain geometry, especially in the forebrain area. The brain of a shark shows the basic components in a straightforward way, but in teleost
Teleostei
Teleostei is one of three infraclasses in class Actinopterygii, the ray-finned fishes. This diverse group, which arose in the Triassic period, includes 20,000 extant species in about 40 orders; most living fishes are members of this group...

 fishes (the great majority of existing fish species), the forebrain has become "everted", like a sock turned inside out. In birds, there are also major changes in forebrain structure. These distortions can make it difficult to match brain components from one species with those of another species.
Here is a list of some of the most important vertebrate brain components, along with a brief description of their functions as currently understood:
  • The medulla
    Medulla oblongata
    The medulla oblongata is the lower half of the brainstem. In discussions of neurology and similar contexts where no ambiguity will result, it is often referred to as simply the medulla...

    , along with the spinal cord, contains many small nuclei involved in a wide variety of sensory and motor functions.

  • The pons
    Pons
    The pons is a structure located on the brain stem, named after the Latin word for "bridge" or the 16th-century Italian anatomist and surgeon Costanzo Varolio . It is superior to the medulla oblongata, inferior to the midbrain, and ventral to the cerebellum. In humans and other bipeds this means it...

    lies in the brainstem directly above the medulla. Among other things, it contains nuclei that control sleep, respiration, swallowing, bladder function, equilibrium, eye movement, facial expressions, and posture.

  • The hypothalamus
    Hypothalamus
    The Hypothalamus is a portion of the brain that contains a number of small nuclei with a variety of functions...

    is a small region at the base of the forebrain, whose complexity and importance belies its size. It is composed of numerous small nuclei, each with distinct connections and neurochemistry. The hypothalamus regulates sleep and wake cycles, eating and drinking, hormone release, and many other critical biological functions.

  • The thalamus
    Thalamus
    The thalamus is a midline paired symmetrical structure within the brains of vertebrates, including humans. It is situated between the cerebral cortex and midbrain, both in terms of location and neurological connections...

    is another collection of nuclei with diverse functions. Some are involved in relaying information to and from the cerebral hemispheres. Others are involved in motivation. The subthalamic area (zona incerta
    Zona incerta
    The zona incerta is a horizontally elongated region of gray matter cells in the subthalamus below the thalamus. Its connections project extensively over the brain from the cerebral cortex down into the spinal cord....

    ) seems to contain action-generating systems for several types of "consummatory" behaviors, including eating, drinking, defecation, and copulation.

  • The cerebellum
    Cerebellum
    The cerebellum is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established...

    modulates the outputs of other brain systems to make them precise. Removal of the cerebellum does not prevent an animal from doing anything in particular, but it makes actions hesitant and clumsy. This precision is not built-in, but learned by trial and error. Learning how to ride a bicycle is an example of a type of neural plasticity that may take place largely within the cerebellum.

  • The optic tectum
    Superior colliculus
    The optic tectum or simply tectum is a paired structure that forms a major component of the vertebrate midbrain. In mammals this structure is more commonly called the superior colliculus , but, even in mammals, the adjective tectal is commonly used. The tectum is a layered structure, with a...

    allows actions to be directed toward points in space, most commonly in response to visual input. In mammals it is usually referred to as the superior colliculus
    Superior colliculus
    The optic tectum or simply tectum is a paired structure that forms a major component of the vertebrate midbrain. In mammals this structure is more commonly called the superior colliculus , but, even in mammals, the adjective tectal is commonly used. The tectum is a layered structure, with a...

    , and its best-studied function is to direct eye movements. It also directs reaching movements and other object-directed actions. It receives strong visual inputs, but also inputs from other senses that are useful in directing actions, such as auditory input in owls and input from the thermosensitive pit organs in snakes. In some fishes, such as lampreys, this region is the largest part of the brain.

  • The pallium
    Pallium (neuroanatomy)
    In a neuroanatomy context, the word pallium refers to the layers of gray and white matter that cover the upper surface of the telencephalon in vertebrates. The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates the pallium is a relatively simple three-layered...

    is a layer of gray matter that lies on the surface of the forebrain. In reptiles and mammals, it is called the cerebral cortex
    Cerebral cortex
    The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

    . Multiple functions involve the pallium, including olfaction
    Olfaction
    Olfaction is the sense of smell. This sense is mediated by specialized sensory cells of the nasal cavity of vertebrates, and, by analogy, sensory cells of the antennae of invertebrates...

     and spatial memory
    Spatial memory
    In cognitive psychology and neuroscience, spatial memory is the part of memory responsible for recording information about one's environment and its spatial orientation. For example, a person's spatial memory is required in order to navigate around a familiar city, just as a rat's spatial memory is...

    . In mammals, where it becomes so large as to dominate the brain, it takes over functions from many other brain areas. In many mammals, the cerebral cortex consists of folded bulges called gyri that create deep furrows or fissures called sulci. The folds increase the surface area of the cortex and therefore increase the amount of gray matter and the amount of information that can be processed.

  • The hippocampus
    Hippocampus
    The hippocampus is a major component of the brains of humans and other vertebrates. It belongs to the limbic system and plays important roles in the consolidation of information from short-term memory to long-term memory and spatial navigation. Humans and other mammals have two hippocampi, one in...

    , strictly speaking, is found only in mammals. However, the area it derives from, the medial pallium, has counterparts in all vertebrates. There is evidence that this part of the brain is involved in spatial memory and navigation in fishes, birds, reptiles, and mammals.

  • The basal ganglia
    Basal ganglia
    The basal ganglia are a group of nuclei of varied origin in the brains of vertebrates that act as a cohesive functional unit. They are situated at the base of the forebrain and are strongly connected with the cerebral cortex, thalamus and other brain areas...

    are a group of interconnected structures in the forebrain. The primary function of the basal ganglia appears to be action selection
    Action selection
    Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit...

    : they send inhibitory signals to all parts of the brain that can generate motor behaviors, and in the right circumstances can release the inhibition, so that the action-generating systems are able to execute their actions. Reward and punishment exert their most important neural effects by altering connections within the basal ganglia.

  • The olfactory bulb
    Olfactory bulb
    The olfactory bulb is a structure of the vertebrate forebrain involved in olfaction, the perception of odors.-Anatomy:In most vertebrates, the olfactory bulb is the most rostral part of the brain. In humans, however, the olfactory bulb is on the inferior side of the brain...

    is a special structure that processes olfactory sensory signals and sends its output to the olfactory part of the pallium. It is a major brain component in many vertebrates, but is greatly reduced in primates.

Mammals


The most obvious difference between the brains of mammals and other vertebrates is in terms of size. On average, a mammal has a brain roughly twice as large as that of a bird of the same body size, and ten times as large as that of a reptile of the same body size.

Size, however, is not the only difference: there are also substantial differences in shape. The hindbrain and midbrain of mammals are generally similar to those of other vertebrates, but dramatic differences appear in the forebrain, which is greatly enlarged and also altered in structure. The cerebral cortex
Cerebral cortex
The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

 is the part of the brain that most strongly distinguishes mammals. In non-mammalian vertebrates, the surface of the cerebrum is lined with a comparatively simple three-layered structure called the pallium
Pallium (neuroanatomy)
In a neuroanatomy context, the word pallium refers to the layers of gray and white matter that cover the upper surface of the telencephalon in vertebrates. The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates the pallium is a relatively simple three-layered...

. In mammals, the pallium evolves into a complex six-layered structure called neocortex
Neocortex
The neocortex , also called the neopallium and isocortex , is a part of the brain of mammals. It is the outer layer of the cerebral hemispheres, and made up of six layers, labelled I to VI...

 or isocortex. Several areas at the edge of the neocortex, including the hippocampus
Hippocampus
The hippocampus is a major component of the brains of humans and other vertebrates. It belongs to the limbic system and plays important roles in the consolidation of information from short-term memory to long-term memory and spatial navigation. Humans and other mammals have two hippocampi, one in...

 and amygdala
Amygdala
The ' are almond-shaped groups of nuclei located deep within the medial temporal lobes of the brain in complex vertebrates, including humans. Shown in research to perform a primary role in the processing and memory of emotional reactions, the amygdalae are considered part of the limbic system.-...

, are also much more extensively developed in mammals than in other vertebrates.

The elaboration of the cerebral cortex carries with it changes to other brain areas. The superior colliculus
Superior colliculus
The optic tectum or simply tectum is a paired structure that forms a major component of the vertebrate midbrain. In mammals this structure is more commonly called the superior colliculus , but, even in mammals, the adjective tectal is commonly used. The tectum is a layered structure, with a...

, which plays a major role in visual control of behavior in most vertebrates, shrinks to a small size in mammals, and many of its functions are taken over by visual areas of the cerebral cortex. The cerebellum
Cerebellum
The cerebellum is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established...

 of mammals contains a large portion (the neocerebellum) dedicated to supporting the cerebral cortex, which has no counterpart in other vertebrates.

Primates

Encephalization Quotient
Species EQ
Human
Human
Humans are the only living species in the Homo genus...

7.4-7.8
Chimpanzee
Chimpanzee
Chimpanzee, sometimes colloquially chimp, is the common name for the two extant species of ape in the genus Pan. The Congo River forms the boundary between the native habitat of the two species:...

2.2-2.5
Rhesus monkey
Rhesus Macaque
The Rhesus macaque , also called the Rhesus monkey, is one of the best-known species of Old World monkeys. It is listed as Least Concern in the IUCN Red List of Threatened Species in view of its wide distribution, presumed large population, and its tolerance of a broad range of habitats...

2.1
Bottlenose dolphin
Bottlenose Dolphin
Bottlenose dolphins, the genus Tursiops, are the most common and well-known members of the family Delphinidae, the family of oceanic dolphins. Recent molecular studies show the genus contains two species, the common bottlenose dolphin and the Indo-Pacific bottlenose dolphin , instead of one...

4.14
Elephant
Elephant
Elephants are large land mammals in two extant genera of the family Elephantidae: Elephas and Loxodonta, with the third genus Mammuthus extinct...

1.13-2.36
Dog
Dog
The domestic dog is a domesticated form of the gray wolf, a member of the Canidae family of the order Carnivora. The term is used for both feral and pet varieties. The dog may have been the first animal to be domesticated, and has been the most widely kept working, hunting, and companion animal in...

1.2
Horse
Horse
The horse is one of two extant subspecies of Equus ferus, or the wild horse. It is a single-hooved mammal belonging to the taxonomic family Equidae. The horse has evolved over the past 45 to 55 million years from a small multi-toed creature into the large, single-toed animal of today...

0.9
Rat
Rat
Rats are various medium-sized, long-tailed rodents of the superfamily Muroidea. "True rats" are members of the genus Rattus, the most important of which to humans are the black rat, Rattus rattus, and the brown rat, Rattus norvegicus...

0.4

The brains of humans and other primate
Primate
A primate is a mammal of the order Primates , which contains prosimians and simians. Primates arose from ancestors that lived in the trees of tropical forests; many primate characteristics represent adaptations to life in this challenging three-dimensional environment...

s contain the same structures as the brains of other mammals, but are generally larger in proportion to body size. The most widely accepted way of comparing brain sizes across species is the so-called encephalization quotient
Encephalization quotient
Encephalization Quotient , or encephalization level is a measure of relative brain size defined as the ratio between actual brain mass and predicted brain mass for an animal of a given size, which is hypothesized to be a rough estimate of the intelligence of the animal.This is a more refined...

 (EQ), which takes into account the nonlinearity of the brain-to-body relationship. Humans have an average EQ in the 7-to-8 range, while most other primates have an EQ in the 2-to-3 range. Dolphins have values higher than those of primates other than humans, but nearly all other mammals have EQ values that are substantially lower.

Most of the enlargement of the primate brain comes from a massive expansion of the cerebral cortex, especially the prefrontal cortex
Prefrontal cortex
The prefrontal cortex is the anterior part of the frontal lobes of the brain, lying in front of the motor and premotor areas.This brain region has been implicated in planning complex cognitive behaviors, personality expression, decision making and moderating correct social behavior...

 and the parts of the cortex involved in vision
Visual perception
Visual perception is the ability to interpret information and surroundings from the effects of visible light reaching the eye. The resulting perception is also known as eyesight, sight, or vision...

. The visual processing network of primates includes at least 30 distinguishable brain areas, with a complex web of interconnections. It has been estimated that visual processing areas occupy more than half of the total surface of the primate neocortex. The prefrontal cortex
Prefrontal cortex
The prefrontal cortex is the anterior part of the frontal lobes of the brain, lying in front of the motor and premotor areas.This brain region has been implicated in planning complex cognitive behaviors, personality expression, decision making and moderating correct social behavior...

 carries out functions that include planning
Foresight (psychology)
Foresight is the ability to predict, or the action of predicting, what will happen or what is needed in the future.Studies suggest that much of human daily thought is directed towards potential future events. Because of this and its role in human control on the planet, the nature and evolution of...

, working memory
Working memory
Working memory has been defined as the system which actively holds information in the mind to do verbal and nonverbal tasks such as reasoning and comprehension, and to make it available for further information processing...

, motivation
Motivation
Motivation is the driving force by which humans achieve their goals. Motivation is said to be intrinsic or extrinsic. The term is generally used for humans but it can also be used to describe the causes for animal behavior as well. This article refers to human motivation...

, attention
Attention
Attention is the cognitive process of paying attention to one aspect of the environment while ignoring others. Attention is one of the most intensely studied topics within psychology and cognitive neuroscience....

, and executive control
Executive functions
The executive system is a theorized cognitive system in psychology that controls and manages other cognitive processes. It is responsible for processes that are sometimes referred to as the executive function, executive functions, supervisory attentional system, or cognitive control...

. It takes up a much larger proportion of the brain for primates than for other species, and an especially large fraction of the human brain.

Physiology


The functions of the brain depend on the ability of neurons to transmit electrochemical signals to other cells, and their ability to respond appropriately to electrochemical signals received from other cells. The electrical properties
Membrane potential
Membrane potential is the difference in electrical potential between the interior and exterior of a biological cell. All animal cells are surrounded by a plasma membrane composed of a lipid bilayer with a variety of types of proteins embedded in it...

 of neurons are controlled by a wide variety of biochemical and metabolic processes, most notably the interactions between neurotransmitters and receptors that take place at synapses.

Neurotransmitters and receptors


Neurotransmitters are chemicals that are released at synapses when an action potential activates them—neurotransmitters attach themselves to receptor molecules on the membrane of the synapse's target cell, and thereby alter the electrical or chemical properties of the receptor molecules.
With few exceptions, each neuron in the brain releases the same chemical neurotransmitter, or combination of neurotransmitters, at all the synaptic connections it makes with other neurons; this rule is known as Dale's principle
Dale's principle
In neuroscience, Dale's Principle is a rule attributed to the English neuroscientist Henry Hallett Dale. The principle basically states that a neuron performs the same chemical action at all of its synaptic connections to other cells, regardless of the identity of the target cell...

. Thus, a neuron can be characterized by the neurotransmitters that it releases. The great majority of psychoactive drug
Psychoactive drug
A psychoactive drug, psychopharmaceutical, or psychotropic is a chemical substance that crosses the blood–brain barrier and acts primarily upon the central nervous system where it affects brain function, resulting in changes in perception, mood, consciousness, cognition, and behavior...

s exert their effects by altering specific neurotransmitter systems. This applies to drugs such as marijuana
Cannabis (drug)
Cannabis, also known as marijuana among many other names, refers to any number of preparations of the Cannabis plant intended for use as a psychoactive drug or for medicinal purposes. The English term marijuana comes from the Mexican Spanish word marihuana...

, nicotine
Nicotine
Nicotine is an alkaloid found in the nightshade family of plants that constitutes approximately 0.6–3.0% of the dry weight of tobacco, with biosynthesis taking place in the roots and accumulation occurring in the leaves...

, heroin, cocaine
Cocaine
Cocaine is a crystalline tropane alkaloid that is obtained from the leaves of the coca plant. The name comes from "coca" in addition to the alkaloid suffix -ine, forming cocaine. It is a stimulant of the central nervous system, an appetite suppressant, and a topical anesthetic...

, alcohol
Alcohol
In chemistry, an alcohol is an organic compound in which the hydroxy functional group is bound to a carbon atom. In particular, this carbon center should be saturated, having single bonds to three other atoms....

, fluoxetine
Fluoxetine
Fluoxetine is an antidepressant of the selective serotonin reuptake inhibitor class. It is manufactured and marketed by Eli Lilly and Company...

, chlorpromazine
Chlorpromazine
Chlorpromazine is a typical antipsychotic...

, and many others.

The two neurotransmitters that are used most widely in the vertebrate brain are glutamate
Glutamic acid
Glutamic acid is one of the 20 proteinogenic amino acids, and its codons are GAA and GAG. It is a non-essential amino acid. The carboxylate anions and salts of glutamic acid are known as glutamates...

, which almost always exerts excitatory effects on target neurons, and gamma-aminobutyric acid
Gamma-aminobutyric acid
γ-Aminobutyric acid is the chief inhibitory neurotransmitter in the mammalian central nervous system. It plays a role in regulating neuronal excitability throughout the nervous system...

 (GABA), which is almost always inhibitory. Neurons using these transmitters can be found in nearly every part of the brain. Because of their ubiquity, drugs that act on glutamate or GABA tend to have broad and powerful effects. Some general anesthetics act by reducing the effects of glutamate; most tranquilizers exert their sedative effects by enhancing the effects of GABA.

There are dozens of other chemical neurotransmitters that are used in more limited areas of the brain, often areas dedicated to a particular function. Serotonin
Serotonin
Serotonin or 5-hydroxytryptamine is a monoamine neurotransmitter. Biochemically derived from tryptophan, serotonin is primarily found in the gastrointestinal tract, platelets, and in the central nervous system of animals including humans...

, for example—the primary target of antidepressant drugs and many dietary aids—comes exclusively from a small brainstem area called the Raphe nuclei
Raphe nuclei
The raphe nuclei are a moderate-size cluster of nuclei found in the brain stem. Their main function is to release serotonin to the rest of the brain...

. Norepinephrine
Norepinephrine
Norepinephrine is the US name for noradrenaline , a catecholamine with multiple roles including as a hormone and a neurotransmitter...

, which is involved in arousal, comes exclusively from a nearby small area called the locus coeruleus. Other neurotransmitters such as acetylcholine
Acetylcholine
The chemical compound acetylcholine is a neurotransmitter in both the peripheral nervous system and central nervous system in many organisms including humans...

 and dopamine
Dopamine
Dopamine is a catecholamine neurotransmitter present in a wide variety of animals, including both vertebrates and invertebrates. In the brain, this substituted phenethylamine functions as a neurotransmitter, activating the five known types of dopamine receptors—D1, D2, D3, D4, and D5—and their...

 have multiple sources in the brain, but are not as ubiquitously distributed as glutamate and GABA.

Electrical activity



As a side effect of the electrochemical processes used by neurons for signaling, brain tissue generates electric fields when it is active. When large numbers of neurons show synchronized activity, the electric fields that they generate can be large enough to detect outside the skull, using electroencephalography
Electroencephalography
Electroencephalography is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain...

 (EEG). EEG recordings, along with recordings made from electrodes implanted inside the brains of animals such as rats, show that the brain of a living animal is constantly active, even during sleep. Each part of the brain shows a mixture of rhythmic and nonrhythmic activity, which may vary according to behavioral state. In mammals, the cerebral cortex tends to show large slow delta wave
Delta wave
A delta wave is a high amplitude brain wave with a frequency of oscillation between 0–4 hertz. Delta waves, like other brain waves, are recorded with an electroencephalogram and are usually associated with the deepest stages of sleep , also known as slow-wave sleep , and aid in characterizing the...

s during sleep, faster alpha wave
Alpha wave
Alpha waves are neural oscillations in the frequency range of 8–12 Hz arising from synchronous and coherent electrical activity of thalamic pacemaker cells in humans...

s when the animal is awake but inattentive, and chaotic-looking irregular activity when the animal is actively engaged in a task. During an epileptic seizure
Epilepsy
Epilepsy is a common chronic neurological disorder characterized by seizures. These seizures are transient signs and/or symptoms of abnormal, excessive or hypersynchronous neuronal activity in the brain.About 50 million people worldwide have epilepsy, and nearly two out of every three new cases...

, the brain's inhibitory control mechanisms fail to function and electrical activity rises to pathological levels, producing EEG traces that show large wave and spike patterns not seen in a healthy brain. Relating these population-level patterns to the computational functions of individual neurons is a major focus of current research in neurophysiology.

Metabolism


All vertebrates have a blood-brain barrier
Blood-brain barrier
The blood–brain barrier is a separation of circulating blood and the brain extracellular fluid in the central nervous system . It occurs along all capillaries and consists of tight junctions around the capillaries that do not exist in normal circulation. Endothelial cells restrict the diffusion...

 that allows metabolism inside the brain to operate differently from metabolism in other parts of the body. Glial cells play a major role in brain metabolism, by controlling the chemical composition of the fluid that surrounds neurons, including levels of ions and nutrients.

Brain tissue consumes a large amount of energy in proportion to its volume, so large brains place severe metabolic demands on animals. The need to limit body weight in order, for example, to fly, has apparently led to selection for a reduction of brain size in some species, such as bats. Most of the brain's energy consumption goes into sustaining the electric charge (membrane potential
Membrane potential
Membrane potential is the difference in electrical potential between the interior and exterior of a biological cell. All animal cells are surrounded by a plasma membrane composed of a lipid bilayer with a variety of types of proteins embedded in it...

) of neurons. Most vertebrate species devote between 2% and 8% of basal metabolism to the brain. In primates, however, the fraction is much higher—in humans it rises to 20–25%. The energy consumption of the brain does not vary greatly over time, but active regions of the cerebral cortex consume somewhat more energy than inactive regions; this forms the basis for the functional brain imaging methods PET
Positron emission tomography
Positron emission tomography is nuclear medicine imaging technique that produces a three-dimensional image or picture of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide , which is introduced into the body on a...

 and fMRI. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose
Glucose
Glucose is a simple sugar and an important carbohydrate in biology. Cells use it as the primary source of energy and a metabolic intermediate...

 (i.e., blood sugar). In some species, though, alternative sources of energy may be used, including lactate, ketones, amino acids, glycogen, and possibly lipids.

Functions


From an evolutionary-biological perspective, the function of the brain is to provide coherent control over the actions of an animal. A centralized brain allows groups of muscles to be co-activated in complex patterns; it also allows stimuli impinging on one part of the body to evoke responses in other parts, and it can prevent different parts of the body from acting at cross-purposes to each other.

To generate purposeful and unified action, the brain first brings information from sense organs together at a central location. It then processes this raw data to extract information about the structure of the environment. Next it combines the processed sensory information with information about the current needs of an animal and with memory of past circumstances. Finally, on the basis of the results, it generates motor response patterns that are suited to maximize the welfare of the animal. These signal-processing tasks require intricate interplay between a variety of functional subsystems.

Information processing


The invention of electronic computers in the 1940s, along with the development of mathematical information theory
Information theory
Information theory is a branch of applied mathematics and electrical engineering involving the quantification of information. Information theory was developed by Claude E. Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and...

, led to a realization that brains can potentially be understood as information processing systems. This concept formed the basis of the field of cybernetics
Cybernetics
Cybernetics is the interdisciplinary study of the structure of regulatory systems. Cybernetics is closely related to information theory, control theory and systems theory, at least in its first-order form...

, and eventually gave rise to the field now known as computational neuroscience
Computational neuroscience
Computational neuroscience is the study of brain function in terms of the information processing properties of the structures that make up the nervous system...

. The earliest attempts at cybernetics were somewhat crude in that they treated the brain as essentially a digital computer in disguise, as for example in John von Neumann
John von Neumann
John von Neumann was a Hungarian-American mathematician and polymath who made major contributions to a vast number of fields, including set theory, functional analysis, quantum mechanics, ergodic theory, geometry, fluid dynamics, economics and game theory, computer science, numerical analysis,...

's 1958 book, The Computer and the Brain. Over the years, though, accumulating information about the electrical responses of brain cells recorded from behaving animals has steadily moved theoretical concepts in the direction of increasing realism.
The essence of the information processing approach is to try to understand brain function in terms of information flow and implementation of algorithm
Algorithm
In mathematics and computer science, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. Algorithms are used for calculation, data processing, and automated reasoning...

s. One of the most influential early contributions was a 1959 paper titled What the frog's eye tells the frog's brain: the paper examined the visual responses of neurons in the retina
Retina
The vertebrate retina is a light-sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical...

 and optic tectum
Superior colliculus
The optic tectum or simply tectum is a paired structure that forms a major component of the vertebrate midbrain. In mammals this structure is more commonly called the superior colliculus , but, even in mammals, the adjective tectal is commonly used. The tectum is a layered structure, with a...

 of frogs, and came to the conclusion that some neurons in the tectum of the frog are wired to combine elementary responses in a way that makes them function as "bug perceivers". A few years later David Hubel
David H. Hubel
David Hunter Hubel is the John Franklin Enders Professor of Neurobiology, Emeritus, at Harvard Medical School. He was co-recipient with Torsten Wiesel of the 1981 Nobel Prize in Physiology or Medicine, for their discoveries concerning information processing in the visual system; the prize was...

 and Torsten Wiesel
Torsten Wiesel
Torsten Nils Wiesel was a Swedish co-recipient with David H. Hubel of the 1981 Nobel Prize in Physiology or Medicine, for their discoveries concerning information processing in the visual system; the prize was shared with Roger W...

 discovered cells in the primary visual cortex of monkeys that become active when sharp edges move across specific points in the field of view—a discovery that eventually brought them a Nobel Prize. Followup studies in higher-order visual areas found cells that detect binocular disparity
Binocular disparity
Binocular disparity refers to the difference in image location of an object seen by the left and right eyes, resulting from the eyes' horizontal separation. The brain uses binocular disparity to extract depth information from the two-dimensional retinal images in stereopsis...

, color, movement, and aspects of shape, with areas located at increasing distances from the primary visual cortex showing increasingly complex responses. Other investigations of brain areas unrelated to vision have revealed cells with a wide variety of response correlates, some related to memory, some to abstract types of cognition such as space.

Theorists have worked to understand these response patterns by constructing mathematical models of neurons and neural networks, which can be simulated using computers. Some useful models are abstract, focusing on the conceptual structure of neural algorithms rather than the details of how they are implemented in the brain; other models attempt to incorporate data about the biophysical properties of real neurons. No model on any level is yet considered to be a fully valid description of brain function, though. The essential difficulty is that sophisticated computation by neural networks requires distributed processing in which hundreds or thousands of neurons work cooperatively—current methods of brain activity recording are only capable of isolating action potentials from a few dozen neurons at a time.

Perception



One of the primary functions of a brain is to extract biologically relevant information from sensory inputs. The human brain is provided with information about light, sound, the chemical composition of the atmosphere, temperature, head orientation, limb position, the chemical composition of the bloodstream, and more. In other animals additional senses may be present, such as the infrared heat-sense of snakes, the magnetic field sense of some birds, or the electric field sense of some types of fish. Moreover, other animals may develop existing sensory systems in new ways, such as the adaptation by bats of the auditory sense into a form of sonar. One way or another, all of these sensory modalities are initially detected by specialized sensors that project signals into the brain.

Each sensory system begins with specialized receptor cells, such as light-receptive neurons in the retina
Retina
The vertebrate retina is a light-sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical...

 of the eye, vibration-sensitive neurons in the cochlea
Cochlea
The cochlea is the auditory portion of the inner ear. It is a spiral-shaped cavity in the bony labyrinth, making 2.5 turns around its axis, the modiolus....

 of the ear, or pressure-sensitive neurons in the skin. The axons of sensory receptor cells travel into the spinal cord or brain, where they transmit their signals to a first-order sensory nucleus
Sensory system
A sensory system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory receptors, neural pathways, and parts of the brain involved in sensory perception. Commonly recognized sensory systems are those for vision, hearing, somatic...

 dedicated to one specific sensory modality
Stimulus modality
Stimulus modality also sensory modality is one aspect of a stimulus or what we percieve after a stimulus. For example the temperature modality is registered after heat or cold stimulate a receptor. There are many modalities: temperature, taste, pressure...

. This primary sensory nucleus sends information to higher-order sensory areas that are dedicated to the same modality. Eventually, via a way-station in the thalamus
Thalamus
The thalamus is a midline paired symmetrical structure within the brains of vertebrates, including humans. It is situated between the cerebral cortex and midbrain, both in terms of location and neurological connections...

, the signals are sent to the cerebral cortex, where they are processed to extract biologically relevant features, and integrated
Multimodal integration
Multimodal integration, also known as multisensory integration, is the study of how information from the different sensory modalities, such as sight, sound, touch, smell, self-motion and taste, may be integrated by the nervous system. A coherent representation of objects combining modalities...

 with signals coming from other sensory systems.

Motor control


Motor system
Motor system
The motor system is the part of the central nervous system that is involved with movement. It consists of the pyramidal and extrapyramidal system....

s are areas of the brain that are directly or indirectly involved in producing body movements, that is, in activating muscles. Except for the muscles that control the eye, which are driven by nuclei in the midbrain, all the voluntary muscles in the body are directly innervated by motor neuron
Motor neuron
In vertebrates, the term motor neuron classically applies to neurons located in the central nervous system that project their axons outside the CNS and directly or indirectly control muscles...

s in the spinal cord and hindbrain. Spinal motor neurons are controlled both by neural circuits intrinsic to the spinal cord, and by inputs that descend from the brain. The intrinsic spinal circuits implement many reflex
Reflex
A reflex action, also known as a reflex, is an involuntary and nearly instantaneous movement in response to a stimulus. A true reflex is a behavior which is mediated via the reflex arc; this does not apply to casual uses of the term 'reflex'.-See also:...

 responses, and contain pattern generators
Central pattern generator
Central pattern generators are neural networks that produce rhythmic patterned outputs without sensory feedback. CPGs have been shown to produce rhythmic outputs resembling normal "rhythmic motor pattern production" even in isolation from motor and sensory feedback from limbs and other muscle...

 for rhythmic movements such as walking or swimming. The descending connections from the brain allow for more sophisticated control.

The brain contains several motor areas that project directly to the spinal cord. At the lowest level are motor areas in the medulla and pons, which control stereotyped movements such as walking, breathing, or swallowing. At a higher level are areas in the midbrain, such as the red nucleus
Red nucleus
The red nucleus is a structure in the rostral midbrain involved in motor coordination. It comprises a caudal magnocellular and a rostral parvocellular part.-Function:...

, which is responsible for coordinating movements of the arms and legs. At a higher level yet is the primary motor cortex
Primary motor cortex
The primary motor cortex is a brain region that in humans is located in the posterior portion of the frontal lobe. Itworks in association with pre-motor areas to plan and execute movements. M1 contains large neurons known as Betz cells, which send long axons down the spinal cord to synapse onto...

, a strip of tissue located at the posterior edge of the frontal lobe. The primary motor cortex sends projections to the subcortical motor areas, but also sends a massive projection directly to the spinal cord, through the pyramidal tract. This direct corticospinal projection allows for precise voluntary control of the fine details of movements. Other motor-related brain areas exert secondary effects by projecting to the primary motor areas. Among the most important secondary areas are the premotor cortex, basal ganglia, and cerebellum.
Major areas involved in controlling movement
Area Location Function
Ventral horn Spinal cord Contains motor neurons that directly activate muscles
Oculomotor nuclei
Oculomotor nucleus
The fibers of the oculomotor nerve arise from a nucleus in the midbrain, which lies in the gray substance of the floor of the cerebral aqueduct and extends in front of the aqueduct for a short distance into the floor of the third ventricle...

Midbrain Contains motor neurons that directly activate the eye muscles
Cerebellum
Cerebellum
The cerebellum is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established...

Hindbrain Calibrates precision and timing of movements
Basal ganglia
Basal ganglia
The basal ganglia are a group of nuclei of varied origin in the brains of vertebrates that act as a cohesive functional unit. They are situated at the base of the forebrain and are strongly connected with the cerebral cortex, thalamus and other brain areas...

Forebrain Action selection
Action selection
Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit...

 on the basis of motivation
Motor cortex
Motor cortex
Motor cortex is a term that describes regions of the cerebral cortex involved in the planning, control, and execution of voluntary motor functions.-Anatomy of the motor cortex :The motor cortex can be divided into four main parts:...

Frontal lobe Direct cortical activation of spinal motor circuits
Premotor cortex
Premotor cortex
The premotor cortex is an area of motor cortex lying within the frontal lobe of the brain. It extends 3 mm anterior to the primary motor cortex, near the Sylvian fissure, before narrowing to approximately 1 mm near the medial longitudinal fissure, which serves as the posterior border for...

Frontal lobe Groups elementary movements into coordinated patterns
Supplementary motor area
Supplementary motor area
The supplementary motor area is a part of the sensorimotor cerebral cortex . It was included, on purely cytoarchitectonic arguments, in area 6 of Brodmann and the Vogts...

Frontal lobe Sequences movements into temporal patterns
Prefrontal cortex
Prefrontal cortex
The prefrontal cortex is the anterior part of the frontal lobes of the brain, lying in front of the motor and premotor areas.This brain region has been implicated in planning complex cognitive behaviors, personality expression, decision making and moderating correct social behavior...

Frontal lobe Planning and other executive functions
Executive functions
The executive system is a theorized cognitive system in psychology that controls and manages other cognitive processes. It is responsible for processes that are sometimes referred to as the executive function, executive functions, supervisory attentional system, or cognitive control...



In addition to all of the above, the brain and spinal cord contain extensive circuitry to control the autonomic nervous system
Autonomic nervous system
The autonomic nervous system is the part of the peripheral nervous system that acts as a control system functioning largely below the level of consciousness, and controls visceral functions. The ANS affects heart rate, digestion, respiration rate, salivation, perspiration, diameter of the pupils,...

, which works by secreting hormones and by modulating the "smooth" muscles of the gut. The autonomic nervous system affects heart rate
Heart rate
Heart rate is the number of heartbeats per unit of time, typically expressed as beats per minute . Heart rate can vary as the body's need to absorb oxygen and excrete carbon dioxide changes, such as during exercise or sleep....

, digestion
Digestion
Digestion is the mechanical and chemical breakdown of food into smaller components that are more easily absorbed into a blood stream, for instance. Digestion is a form of catabolism: a breakdown of large food molecules to smaller ones....

, respiration rate
Respiration rate
The respiration rate is a parameter which is used in ecological and agronomical modeling.In theoretical production ecology and aquaculture, it typically refers to respiration per unit of time , also referred to as relative respiration rate...

, salivation, perspiration, urination
Urination
Urination, also known as micturition, voiding, peeing, weeing, pissing, and more rarely, emiction, is the ejection of urine from the urinary bladder through the urethra to the outside of the body. In healthy humans the process of urination is under voluntary control...

, and sexual arousal
Sexual arousal
Sexual arousal, or sexual excitement, is the arousal of sexual desire, during or in anticipation of sexual activity. Things that precipitate human sexual arousal are called erotic stimuli, or colloquially known as turn-ons. There are many potential stimuli, both physical or mental, which can cause...

, and several other processes. Most of its functions are not under direct voluntary control.

Arousal



Perhaps the most obvious aspect of the behavior of any animal is the daily cycle between sleeping and waking. Arousal and alertness are also modulated on a finer time scale, though, by an extensive network of brain areas.

A key component of the arousal system is the suprachiasmatic nucleus
Suprachiasmatic nucleus
The suprachiasmatic nucleus or nuclei, abbreviated SCN, is a tiny region on the brain's midline, situated directly above the optic chiasm. It is responsible for controlling circadian rhythms...

 (SCN), a tiny part of the hypothalamus located directly above the point at which the optic nerves from the two eyes cross. The SCN contains the body's central biological clock. Neurons there show activity levels that rise and fall with a period of about 24 hours, circadian rhythm
Circadian rhythm
A circadian rhythm, popularly referred to as body clock, is an endogenously driven , roughly 24-hour cycle in biochemical, physiological, or behavioural processes. Circadian rhythms have been widely observed in plants, animals, fungi and cyanobacteria...

s: these activity fluctuations are driven by rhythmic changes in expression of a set of "clock genes". The SCN continues to keep time even if it is excised from the brain and placed in a dish of warm nutrient solution, but it ordinarily receives input from the optic nerves, through the retinohypothalamic tract
Retinohypothalamic tract
The retinohypothalamic tract is a photic input pathway involved in the circadian rhythms of mammals. The origin of the retinohypothalamic tract is the intrinsically photosensitive retinal ganglion cells , which contain the photopigment melanopsin...

 (RHT), that allows daily light-dark cycles to calibrate the clock.

The SCN projects to a set of areas in the hypothalamus, brainstem, and midbrain that are involved in implementing sleep-wake cycles. An important component of the system is the reticular formation
Reticular formation
The reticular formation is a part of the brain that is involved in actions such as awaking/sleeping cycle, and filtering incoming stimuli to discriminate irrelevant background stimuli...

, a group of neuron-clusters scattered diffusely through the core of the lower brain. Reticular neurons send signals to the thalamus, which in turn sends activity-level-controlling signals to every part of the cortex. Damage to the reticular formation can produce a permanent state of coma.

Sleep involves great changes in brain activity. Until the 1950s it was generally believed that the brain essentially shuts off during sleep, but this is now known to be far from true; activity continues, but patterns become very different. There are two types of sleep: REM sleep (with dreaming) and NREM (non-REM, usually without dreaming) sleep, which repeat in slightly varying patterns throughout a sleep episode. Three broad types of distinct brain activity patterns can be measured: REM, light NREM and deep NREM. During deep NREM sleep, also called slow wave sleep, activity in the cortex takes the form of large synchronized waves, whereas in the waking state it is noisy and desynchronized. Levels of the neurotransmitters norepinephrine
Norepinephrine
Norepinephrine is the US name for noradrenaline , a catecholamine with multiple roles including as a hormone and a neurotransmitter...

 and serotonin
Serotonin
Serotonin or 5-hydroxytryptamine is a monoamine neurotransmitter. Biochemically derived from tryptophan, serotonin is primarily found in the gastrointestinal tract, platelets, and in the central nervous system of animals including humans...

 drop during slow wave sleep, and fall almost to zero during REM sleep; levels of acetylcholine
Acetylcholine
The chemical compound acetylcholine is a neurotransmitter in both the peripheral nervous system and central nervous system in many organisms including humans...

 show the reverse pattern.

Homeostasis


For any animal, survival requires maintaining a variety of parameters of bodily state within a limited range of variation: these include temperature, water content, salt concentration in the bloodstream, blood glucose levels, blood oxygen level, and others. The ability of an animal to regulate the internal environment of its body—the milieu intérieur
Milieu interieur
Milieu intérieur or interior milieu, from the French, milieu intérieur, is a term coined by Claude Bernard to refer to the extra-cellular fluid environment, and its physiological capacity to ensure protective stability for the tissues and organs of multicellular living organisms.-Origin:Claude...

, as pioneering physiologist Claude Bernard
Claude Bernard
Claude Bernard was a French physiologist. He was the first to define the term milieu intérieur . Historian of science I. Bernard Cohen of Harvard University called Bernard "one of the greatest of all men of science"...

 called it—is known as homeostasis
Homeostasis
Homeostasis is the property of a system that regulates its internal environment and tends to maintain a stable, constant condition of properties like temperature or pH...

 (Greek
Ancient Greek
Ancient Greek is the stage of the Greek language in the periods spanning the times c. 9th–6th centuries BC, , c. 5th–4th centuries BC , and the c. 3rd century BC – 6th century AD of ancient Greece and the ancient world; being predated in the 2nd millennium BC by Mycenaean Greek...

 for "standing still"). Maintaining homeostasis is a crucial function of the brain. The basic principle that underlies homeostasis is negative feedback
Negative feedback
Negative feedback occurs when the output of a system acts to oppose changes to the input of the system, with the result that the changes are attenuated. If the overall feedback of the system is negative, then the system will tend to be stable.- Overview :...

: any time a parameter diverges from its set-point, sensors generate an error signal that evokes a response that causes the parameter to shift back toward its optimum value. (This principle is widely used in engineering, for example in the control of temperature using a thermostat
Thermostat
A thermostat is the component of a control system which regulates the temperature of a system so that the system's temperature is maintained near a desired setpoint temperature. The thermostat does this by switching heating or cooling devices on or off, or regulating the flow of a heat transfer...

.)

In vertebrates, the part of the brain that plays the greatest role is the hypothalamus
Hypothalamus
The Hypothalamus is a portion of the brain that contains a number of small nuclei with a variety of functions...

, a small region at the base of the forebrain whose size does not reflect its complexity or the importance of its function.
The hypothalamus is a collection of small nuclei, most of which are involved in basic biological functions. Some of these functions relate to arousal or to social interactions such as sexuality, aggression, or maternal behaviors; but many of them relate to homeostasis. Several hypothalamic nuclei receive input from sensors located in the lining of blood vessels, conveying information about temperature, sodium level, glucose level, blood oxygen level, and other parameters. These hypothalamic nuclei send output signals to motor areas that can generate actions to rectify deficiencies. Some of the outputs also go to the pituitary gland
Pituitary gland
In vertebrate anatomy the pituitary gland, or hypophysis, is an endocrine gland about the size of a pea and weighing 0.5 g , in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain, and rests in a small, bony cavity covered by a dural fold...

, a tiny gland attached to the brain directly underneath the hypothalamus. The pituitary gland secretes hormones into the bloodstream, where they circulate throughout the body and induce changes in cellular activity.

Motivation



According to evolutionary theory
Evolution
Evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level of biological organisation, including species, individual organisms and molecules such as DNA and proteins.Life on Earth...

, all species are genetically programmed to act as though they have a goal of surviving and propagating offspring. At the level of an individual animal, this overarching goal of genetic fitness translates into a set of specific survival-promoting behaviors, such as seeking food, water, shelter, and a mate. The motivational system in the brain monitors the current state of satisfaction of these goals, and activates behaviors to meet any needs that arise. The motivational system works largely by a reward–punishment mechanism. When a particular behavior is followed by favorable consequences, the reward mechanism in the brain is activated, which induces structural changes inside the brain that cause the same behavior to be repeated later, whenever a similar situation arises. Conversely, when a behavior is followed by unfavorable consequences, the brain's punishment mechanism is activated, inducing structural changes that cause the behavior to be suppressed when similar situations arise in the future.

Every type of animal brain that has been studied uses a reward–punishment mechanism: even worms and insects can alter their behavior to seek food sources or to avoid dangers. In vertebrates, the reward-punishment system is implemented by a specific set of brain structures, at the heart of which lie the basal ganglia
Basal ganglia
The basal ganglia are a group of nuclei of varied origin in the brains of vertebrates that act as a cohesive functional unit. They are situated at the base of the forebrain and are strongly connected with the cerebral cortex, thalamus and other brain areas...

, a set of interconnected areas at the base of the forebrain. There is substantial evidence that the basal ganglia are the central site at which decisions are made: the basal ganglia exert a sustained inhibitory control over most of the motor systems in the brain; when this inhibition is released, a motor system is permitted to execute the action it is programmed to carry out. Rewards and punishments function by altering the relationship between the inputs that the basal ganglia receive and the decision-signals that are emitted. The reward mechanism is better understood than the punishment mechanism, because its role in drug abuse has caused it to be studied very intensively. Research has shown that the neurotransmitter dopamine
Dopamine
Dopamine is a catecholamine neurotransmitter present in a wide variety of animals, including both vertebrates and invertebrates. In the brain, this substituted phenethylamine functions as a neurotransmitter, activating the five known types of dopamine receptors—D1, D2, D3, D4, and D5—and their...

 plays a central role: addictive drugs such as cocaine, amphetamine, and nicotine either cause dopamine levels to rise or cause the effects of dopamine inside the brain to be enhanced.

Learning and memory


Almost all animals are capable of modifying their behavior as a result of experience—even the most primitive types of worms. Because behavior is driven by brain activity, changes in behavior must somehow correspond to changes inside the brain. Theorists dating back to Santiago Ramón y Cajal
Santiago Ramón y Cajal
Santiago Ramón y Cajal ForMemRS was a Spanish pathologist, histologist, neuroscientist, and Nobel laureate. His pioneering investigations of the microscopic structure of the brain were original: he is considered by many to be the father of modern neuroscience...

 argued that the most plausible explanation is that learning and memory are expressed as changes in the synaptic connections between neurons. Until 1970, however, experimental evidence to support the synaptic plasticity
Synaptic plasticity
In neuroscience, synaptic plasticity is the ability of the connection, or synapse, between two neurons to change in strength in response to either use or disuse of transmission over synaptic pathways. Plastic change also results from the alteration of the number of receptors located on a synapse...

 hypothesis was lacking. In 1971 Tim Bliss and Terje Lømo published a paper on a phenomenon now called long-term potentiation
Long-term potentiation
In neuroscience, long-term potentiation is a long-lasting enhancement in signal transmission between two neurons that results from stimulating them synchronously. It is one of several phenomena underlying synaptic plasticity, the ability of chemical synapses to change their strength...

: the paper showed clear evidence of activity-induced synaptic changes that lasted for at least several days. Since then technical advances have made these sorts of experiments much easier to carry out, and thousands of studies have been made that have clarified the mechanism of synaptic change, and uncovered other types of activity-driven synaptic change in a variety of brain areas, including the cerebral cortex, hippocampus, basal ganglia, and cerebellum.

Neuroscientists currently distinguish several types of learning and memory that are implemented by the brain in distinct ways:
  • Working memory
    Working memory
    Working memory has been defined as the system which actively holds information in the mind to do verbal and nonverbal tasks such as reasoning and comprehension, and to make it available for further information processing...

    is the ability of the brain to maintain a temporary representation of information about the task that an animal is currently engaged in. This sort of dynamic memory is thought to be mediated by the formation of cell assemblies
    Hebbian theory
    Hebbian theory describes a basic mechanism for synaptic plasticity wherein an increase in synaptic efficacy arises from the presynaptic cell's repeated and persistent stimulation of the postsynaptic cell...

    —groups of activated neurons that maintain their activity by constantly stimulating one another.

  • Episodic memory
    Episodic memory
    Episodic memory is the memory of autobiographical events that can be explicitly stated. Semantic and episodic memory together make up the category of declarative memory, which is one of the two major divisions in memory...

    is the ability to remember the details of specific events. This sort of memory can last for a lifetime. Much evidence implicates the hippocampus
    Hippocampus
    The hippocampus is a major component of the brains of humans and other vertebrates. It belongs to the limbic system and plays important roles in the consolidation of information from short-term memory to long-term memory and spatial navigation. Humans and other mammals have two hippocampi, one in...

     in playing a crucial role: people with severe damage to the hippocampus sometimes show amnesia
    Amnesia
    Amnesia is a condition in which one's memory is lost. The causes of amnesia have traditionally been divided into categories. Memory appears to be stored in several parts of the limbic system of the brain, and any condition that interferes with the function of this system can cause amnesia...

    , that is, inability to form new long-lasting episodic memories.

  • Semantic memory
    Semantic memory
    Semantic memory refers to the memory of meanings, understandings, and other concept-based knowledge unrelated to specific experiences. The conscious recollection of factual information and general knowledge about the world is generally thought to be independent of context and personal relevance...

    is the ability to learn facts and relationships. This sort of memory is probably stored largely in the cerebral cortex
    Cerebral cortex
    The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It is constituted of up to six horizontal layers, each of which has a different...

    , mediated by changes in connections between cells that represent specific types of information.

  • Instrumental learning
    Operant conditioning
    Operant conditioning is a form of psychological learning during which an individual modifies the occurrence and form of its own behavior due to the association of the behavior with a stimulus...

    is the ability for rewards and punishments to modify behavior. It is implemented by a network of brain areas centered on the basal ganglia
    Basal ganglia
    The basal ganglia are a group of nuclei of varied origin in the brains of vertebrates that act as a cohesive functional unit. They are situated at the base of the forebrain and are strongly connected with the cerebral cortex, thalamus and other brain areas...

    .

  • Motor learning
    Motor learning
    Motor learning is a “relatively permanent” change, resulting from practice or a novel experience, in the capability for responding...

    is the ability to refine patterns of body movement by practicing, or more generally by repetition. A number of brain areas are involved, including the premotor cortex
    Premotor cortex
    The premotor cortex is an area of motor cortex lying within the frontal lobe of the brain. It extends 3 mm anterior to the primary motor cortex, near the Sylvian fissure, before narrowing to approximately 1 mm near the medial longitudinal fissure, which serves as the posterior border for...

    , basal ganglia
    Basal ganglia
    The basal ganglia are a group of nuclei of varied origin in the brains of vertebrates that act as a cohesive functional unit. They are situated at the base of the forebrain and are strongly connected with the cerebral cortex, thalamus and other brain areas...

    , and especially the cerebellum
    Cerebellum
    The cerebellum is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established...

    , which functions as a large memory bank for microadjustments of the parameters of movement.

Development



The brain does not simply grow, but rather develops in an intricately orchestrated sequence of stages. It changes in shape from a simple swelling at the front of the nerve cord in the earliest embryonic stages, to a complex array of areas and connections. Neurons are created in special zones that contain stem cell
Stem cell
This article is about the cell type. For the medical therapy, see Stem Cell TreatmentsStem cells are biological cells found in all multicellular organisms, that can divide and differentiate into diverse specialized cell types and can self-renew to produce more stem cells...

s, and then migrate through the tissue to reach their ultimate locations. Once neurons have positioned themselves, their axons sprout and navigate through the brain, branching and extending as they go, until the tips reach their targets and form synaptic connections. In a number of parts of the nervous system, neurons and synapses are produced in excessive numbers during the early stages, and then the unneeded ones are pruned away.

For vertebrates, the early stages of neural development are similar across all species. As the embryo transforms from a round blob of cells into a wormlike structure, a narrow strip of ectoderm
Ectoderm
The "ectoderm" is one of the three primary germ cell layers in the very early embryo. The other two layers are the mesoderm and endoderm , with the ectoderm as the most exterior layer...

 running along the midline of the back is induced
Cellular differentiation
In developmental biology, cellular differentiation is the process by which a less specialized cell becomes a more specialized cell type. Differentiation occurs numerous times during the development of a multicellular organism as the organism changes from a simple zygote to a complex system of...

 to become the neural plate
Neural plate
In human embryology, formation of neural plate is the first step of neurulation. It is created by a flat thickening opposite to the primitive streak of the ectoderm.-Development:...

, the precursor of the nervous system. The neural plate folds inward to form the neural groove
Neural groove
The neural groove is a shallow median groove between the neural folds of an embryo. The neural folds are two longitudinal ridges that are caused by a folding up of the ectoderm in front of the primitive streak of the developing embryo...

, and then the lips that line the groove merge to enclose the neural tube
Neural tube
In the developing vertebrate, the neural tube is the embryo's precursor to the central nervous system, which comprises the brain and spinal cord...

, a hollow cord of cells with a fluid-filled ventricle at the center. At the front end, the ventricles and cord swell to form three vesicles that are the precursors of the forebrain
Prosencephalon
In the anatomy of the brain of vertebrates, the prosencephalon is the rostral-most portion of the brain. The prosencephalon, the mesencephalon , and rhombencephalon are the three primary portions of the brain during early development of the central nervous system...

, midbrain
Mesencephalon
The midbrain or mesencephalon is a portion of the central nervous system associated with vision, hearing, motor control, sleep/wake, arousal , and temperature regulation....

, and hindbrain
Rhombencephalon
The rhombencephalon is a developmental categorization of portions of the central nervous system in vertebrates.The rhombencephalon can be subdivided in a variable number of transversal swellings called rhombomeres...

. At the next stage, the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and related structures) and the diencephalon
Diencephalon
The diencephalon is the region of the vertebrate neural tube which gives rise to posterior forebrain structures. In development, the forebrain develops from the prosencephalon, the most anterior vesicle of the neural tube which later forms both the diencephalon and the...

 (which will contain the thalamus and hypothalamus). At about the same time, the hindbrain splits into the metencephalon
Metencephalon
The metencephalon is a developmental categorization of portions of the central nervous system. The metencephalon is composed of the pons and the cerebellum; contains a portion of the fourth ventricle; and the trigeminal nerve , abducens nerve , facial nerve , and a portion of the vestibulocochlear...

 (which will contain the cerebellum and pons) and the myelencephalon
Myelencephalon
The myelencephalon is categorized as a secondary vesicle in the development of the central nervous system. The prefix "myelen" is derived from Greek for medulla...

 (which will contain the medulla oblongata
Medulla oblongata
The medulla oblongata is the lower half of the brainstem. In discussions of neurology and similar contexts where no ambiguity will result, it is often referred to as simply the medulla...

). Each of these areas contains proliferative zones where neurons and glial cells are generated; the resulting cells then migrate, sometimes for long distances, to their final positions.

Once a neuron is in place, it extends dendrite
Dendrite
Dendrites are the branched projections of a neuron that act to conduct the electrochemical stimulation received from other neural cells to the cell body, or soma, of the neuron from which the dendrites project...

s and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone
Growth cone
A growth cone is a dynamic, actin-supported extension of a developing axon seeking its synaptic target. Their existence was originally proposed by Spanish histologist Santiago Ramón y Cajal based upon stationary images he observed under the microscope...

, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of gene
Gene
A gene is a molecular unit of heredity of a living organism. It is a name given to some stretches of DNA and RNA that code for a type of protein or for an RNA chain that has a function in the organism. Living beings depend on genes, as they specify all proteins and functional RNA chains...

s create products that influence axonal pathfinding.

The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity. In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina
Retina
The vertebrate retina is a light-sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical...

 to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at a random point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time; that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.

Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely to guide development.

In humans and many other mammals, new neurons are created mainly before birth, and the infant brain contains substantially more neurons than the adult brain. There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which adult neurogenesis
Neurogenesis
Neurogenesis is the process by which neurons are generated from neural stem and progenitor cells. Most active during pre-natal development, neurogenesis is responsible for populating the growing brain with neurons. Recently neurogenesis was shown to continue in several small parts of the brain of...

 is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus
Hippocampus
The hippocampus is a major component of the brains of humans and other vertebrates. It belongs to the limbic system and plays important roles in the consolidation of information from short-term memory to long-term memory and spatial navigation. Humans and other mammals have two hippocampi, one in...

, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different: as with most types of cells in the body, they are generated throughout the lifespan.

There has long been debate about whether the qualities of mind
Mind
The concept of mind is understood in many different ways by many different traditions, ranging from panpsychism and animism to traditional and organized religious views, as well as secular and materialist philosophies. Most agree that minds are constituted by conscious experience and intelligent...

, personality, and intelligence can be attributed to heredity or to upbringing—this is the nature versus nurture
Nature versus nurture
The nature versus nurture debate concerns the relative importance of an individual's innate qualities versus personal experiences The nature versus nurture debate concerns the relative importance of an individual's innate qualities ("nature," i.e. nativism, or innatism) versus personal experiences...

 controversy. Although many details remain to be settled, neuroscience research has clearly shown that both factors are important. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections, which in its developed form contains far more information than the genome does. In some respects, all that matters is the presence or absence of experience during critical periods of development. In other respects, the quantity and quality of experience are important; for example, there is substantial evidence that animals raised in enriched environments
Environmental enrichment (neural)
Environmental enrichment concerns how the brain is affected by the stimulation of its information processing provided by its surroundings . Brains in richer, more stimulating environments, have increased numbers of synapses, and the dendrite arbors upon which they reside are more complex...

 have thicker cerebral cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.

Research




The field of neuroscience encompasses all approaches that seek to understand the brain and the rest of the nervous system. Psychology
Psychology
Psychology is the study of the mind and behavior. Its immediate goal is to understand individuals and groups by both establishing general principles and researching specific cases. For many, the ultimate goal of psychology is to benefit society...

 seeks to understand mind and behavior, and neurology
Neurology
Neurology is a medical specialty dealing with disorders of the nervous system. Specifically, it deals with the diagnosis and treatment of all categories of disease involving the central, peripheral, and autonomic nervous systems, including their coverings, blood vessels, and all effector tissue,...

 is the medical
Medicine
Medicine is the science and art of healing. It encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatment of illness....

 discipline that diagnoses and treats diseases of the nervous system. The brain is also the most important organ studied in psychiatry
Psychiatry
Psychiatry is the medical specialty devoted to the study and treatment of mental disorders. These mental disorders include various affective, behavioural, cognitive and perceptual abnormalities...

, the branch of medicine that works to study, prevent, and treat mental disorders. Cognitive science
Cognitive science
Cognitive science is the interdisciplinary scientific study of mind and its processes. It examines what cognition is, what it does and how it works. It includes research on how information is processed , represented, and transformed in behaviour, nervous system or machine...

 seeks to unify neuroscience and psychology with other fields that concern themselves with the brain, such as computer science
Computer science
Computer science or computing science is the study of the theoretical foundations of information and computation and of practical techniques for their implementation and application in computer systems...

 (artificial intelligence
Artificial intelligence
Artificial intelligence is the intelligence of machines and the branch of computer science that aims to create it. AI textbooks define the field as "the study and design of intelligent agents" where an intelligent agent is a system that perceives its environment and takes actions that maximize its...

 and similar fields) and philosophy
Philosophy
Philosophy is the study of general and fundamental problems, such as those connected with existence, knowledge, values, reason, mind, and language. Philosophy is distinguished from other ways of addressing such problems by its critical, generally systematic approach and its reliance on rational...

.

The oldest method of studying the brain is anatomical
Neuroanatomy
Neuroanatomy is the study of the anatomy and organization of the nervous system. In contrast to animals with radial symmetry, whose nervous system consists of a distributed network of cells, animals with bilateral symmetry have segregated, defined nervous systems, and thus we can begin to speak of...

, and until the middle of the 20th century, much of the progress in neuroscience came from the development of better cell stains and better microscopes. Neuroanatomists study the large-scale structure of the brain as well as the microscopic structure of neurons and their components, especially synapses. Among other tools, they employ a plethora of stains that reveal neural structure, chemistry, and connectivity. In recent years, the development of immunostaining
Immunostaining
Immunostaining is a general term in biochemistry that applies to any use of an antibody-based method to detect a specific protein in a sample. The term immunostaining was originally used to refer to the immunohistochemical staining of tissue sections, as first described by Albert Coons in 1941...

 techniques has allowed investigation of neurons that express specific sets of genes. Also, functional neuroanatomy uses medical imaging
Medical imaging
Medical imaging is the technique and process used to create images of the human body for clinical purposes or medical science...

 techniques to correlate variations in human brain structure with differences in cognition or behavior.

Neurophysiologists study the chemical, pharmacological, and electrical properties of the brain: their primary tools are drugs and recording devices. Thousands of experimentally developed drugs affect the nervous system, some in highly specific ways. Recordings of brain activity can be made using electrodes, either glued to the scalp as in EEG
Electroencephalography
Electroencephalography is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain...

 studies, or implanted inside the brains of animals for extracellular
Extracellular
In cell biology, molecular biology and related fields, the word extracellular means "outside the cell". This space is usually taken to be outside the plasma membranes, and occupied by fluid...

 recordings, which can detect action potentials generated by individual neurons. Because the brain does not contain pain receptors, it is possible using these techniques to record brain activity from animals that are awake and behaving without causing distress. The same techniques have occasionally been used to study brain activity in human patients suffering from intractable epilepsy
Epilepsy
Epilepsy is a common chronic neurological disorder characterized by seizures. These seizures are transient signs and/or symptoms of abnormal, excessive or hypersynchronous neuronal activity in the brain.About 50 million people worldwide have epilepsy, and nearly two out of every three new cases...

, in cases where there was a medical necessity to implant electrodes to localize the brain area responsible for epileptic seizures. Functional imaging
Functional imaging
Functional imaging , is a method of detecting or measuring changes in metabolism, blood flow, regional chemical composition, and absorption....

 techniques such as functional magnetic resonance imaging
Functional magnetic resonance imaging
Functional magnetic resonance imaging or functional MRI is a type of specialized MRI scan used to measure the hemodynamic response related to neural activity in the brain or spinal cord of humans or other animals. It is one of the most recently developed forms of neuroimaging...

 are also used to study brain activity; these techniques have mainly been used with human subjects, because they require a conscious subject to remain motionless for long periods of time, but they have the great advantage of being noninvasive.
Another approach to brain function is to examine the consequences of damage
Brain damage
"Brain damage" or "brain injury" is the destruction or degeneration of brain cells. Brain injuries occur due to a wide range of internal and external factors...

 to specific brain areas. Even though it is protected by the skull and meninges
Meninges
The meninges is the system of membranes which envelopes the central nervous system. The meninges consist of three layers: the dura mater, the arachnoid mater, and the pia mater. The primary function of the meninges and of the cerebrospinal fluid is to protect the central nervous system.-Dura...

, surrounded by cerebrospinal fluid
Cerebrospinal fluid
Cerebrospinal fluid , Liquor cerebrospinalis, is a clear, colorless, bodily fluid, that occupies the subarachnoid space and the ventricular system around and inside the brain and spinal cord...

, and isolated from the bloodstream by the blood-brain barrier
Blood-brain barrier
The blood–brain barrier is a separation of circulating blood and the brain extracellular fluid in the central nervous system . It occurs along all capillaries and consists of tight junctions around the capillaries that do not exist in normal circulation. Endothelial cells restrict the diffusion...

, the delicate nature of the brain makes it vulnerable to numerous diseases and several types of damage. In humans, the effects of stroke
Stroke
A stroke, previously known medically as a cerebrovascular accident , is the rapidly developing loss of brain function due to disturbance in the blood supply to the brain. This can be due to ischemia caused by blockage , or a hemorrhage...

s and other types of brain damage have been a key source of information about brain function. Because there is no ability to experimentally control the nature of the damage, however, this information is often difficult to interpret. In animal studies, most commonly involving rats, it is possible to use electrodes or locally injected chemicals to produce precise patterns of damage and then examine the consequences for behavior.

Computational neuroscience
Computational neuroscience
Computational neuroscience is the study of brain function in terms of the information processing properties of the structures that make up the nervous system...

 encompasses two approaches: first, the use of computers to study the brain; second, the study of how brains perform computation. On one hand, it is possible to write a computer program to simulate the operation of a group of neurons by making use of systems of equations that describe their electrochemical activity; such simulations are known as biologically realistic neural networks. On the other hand, it is possible to study algorithms for neural computation by simulating, or mathematically analyzing, the operations of simplified "units" that have some of the properties of neurons but abstract out much of their biological complexity. The computational functions of the brain are studied both by computer scientists and neuroscientists.

Recent years have seen increasing applications of genetic and genomic techniques to the study of the brain. The most common subjects are mice, because of the availability of technical tools. It is now possible with relative ease to "knock out" or mutate a wide variety of genes, and then examine the effects on brain function. More sophisticated approaches are also being used: for example, using Cre-Lox recombination
Cre-Lox recombination
Cre-Lox recombination is a special type of site-specific recombination developed by Dr. Brian Sauer initially for use in activating gene expression in mammalian cell lines and transgenic mice . Subsequently, the laboratory of Dr...

 it is possible to activate or deactivate genes in specific parts of the brain, at specific times.

History


Early philosphers were divided as to whether the seat of the soul lies in the brain or heart. Aristotle favored the heart, and thought that the function of the brain was merely to cool the blood. Democritus, the inventor of the atomic theory of matter, argued for a three-part soul, with intellect in the head, emotion in the heart, and lust near the liver. Hippocrates, the "father of medicine", came down unequivocally in favor of the brain. In his treatise on epilepsy
Epilepsy
Epilepsy is a common chronic neurological disorder characterized by seizures. These seizures are transient signs and/or symptoms of abnormal, excessive or hypersynchronous neuronal activity in the brain.About 50 million people worldwide have epilepsy, and nearly two out of every three new cases...

 he wrote:



The Roman physician Galen
Galen
Aelius Galenus or Claudius Galenus , better known as Galen of Pergamon , was a prominent Roman physician, surgeon and philosopher...

 also argued for the importance of the brain, and theorized in some depth about how it might work. Galen traced out the anatomical relationships among brain, nerves, and muscles, demonstrating that all muscles in the body are connected to the brain through a branching network of nerves. He postulated that nerves activate muscles mechanically by carrying a mysterious substance he called pneumata psychikon, usually translated as "animal spirits". Galen's ideas were widely known during the Middle Ages, but not much further progress came until the Renaissance, when detailed anatomical study resumed, combined with the theoretical speculations of René Descartes
René Descartes
René Descartes ; was a French philosopher and writer who spent most of his adult life in the Dutch Republic. He has been dubbed the 'Father of Modern Philosophy', and much subsequent Western philosophy is a response to his writings, which are studied closely to this day...

 and those who followed him. Descartes, like Galen, thought of the nervous system in hydraulic terms. He believed that the highest cognitive functions are carried out by a non-physical res cogitans, but that the majority of behaviors of humans, and all behaviors of animals, could be explained mechanistically.

The first real progress toward a modern understanding of nervous function, though, came from the investigations of Luigi Galvani
Luigi Galvani
Luigi Aloisio Galvani was an Italian physician and physicist who lived and died in Bologna. In 1791, he discovered that the muscles of dead frogs legs twitched when struck by a spark...

, who discovered that a shock of static electricity applied to an exposed nerve of a dead frog could cause its leg to contract. Since that time, each major advance in understanding has followed more or less directly from the development of a new technique of investigation. Until the early years of the 20th century, the most important advances were derived from new methods for staining cells. Particularly critical was the invention of the Golgi stain
Golgi's method
Golgi's method is a nervous tissue staining technique discovered by Italian physician and scientist Camillo Golgi in 1873. It was initially named the black reaction by Golgi, but it became better known as the Golgi stain or later, Golgi method.Golgi' staining was famously used by Spanish...

, which (when correctly used) stains only a small fraction of neurons, but stains them in their entirety, including cell body, dendrites, and axon. Without such a stain, brain tissue under a microscope appears as an impenetrable tangle of protoplasmic fibers, in which it is impossible to determine any structure. In the hands of Camillo Golgi
Camillo Golgi
Camillo Golgi was an Italian physician, pathologist, scientist, and Nobel laureate.-Biography:Camillo Golgi was born in the village of Corteno, Lombardy, then part of the Austrian Empire. The village is now named Corteno Golgi in his honour. His father was a physician and district medical officer...

, and especially of the Spanish neuroanatomist Santiago Ramón y Cajal
Santiago Ramón y Cajal
Santiago Ramón y Cajal ForMemRS was a Spanish pathologist, histologist, neuroscientist, and Nobel laureate. His pioneering investigations of the microscopic structure of the brain were original: he is considered by many to be the father of modern neuroscience...

, the new stain revealed hundreds of distinct types of neurons, each with its own unique dendritic structure and pattern of connectivity.


In the first half of the 20th century, advances in electronics enabled investigation of the electrical properties of nerve cells, culminating in work by Alan Hodgkin
Alan Lloyd Hodgkin
Sir Alan Lloyd Hodgkin, OM, KBE, PRS was a British physiologist and biophysicist, who shared the 1963 Nobel Prize in Physiology or Medicine with Andrew Huxley and John Eccles....

, Andrew Huxley
Andrew Huxley
Sir Andrew Fielding Huxley, OM, FRS is an English physiologist and biophysicist, who won the 1963 Nobel Prize in Physiology or Medicine for his experimental and mathematical work with Sir Alan Lloyd Hodgkin on the basis of nerve action potentials, the electrical impulses that enable the activity...

, and others on the biophysics of the action potential, and the work of Bernard Katz
Bernard Katz
Sir Bernard Katz, FRS was a German-born biophysicist, noted for his work on nerve biochemistry. He shared the Nobel Prize in physiology or medicine in 1970 with Julius Axelrod and Ulf von Euler...

 and others on the electrochemistry of the synapse. These studies complemented the anatomical picture with a conception of the brain as a dynamic entity. Reflecting the new understanding, in 1942 Charles Sherrington
Charles Scott Sherrington
Sir Charles Scott Sherrington, OM, GBE, PRS was an English neurophysiologist, histologist, bacteriologist, and a pathologist, Nobel laureate and president of the Royal Society in the early 1920s...

 visualized the workings of the brain waking from sleep:



In the second half of the 20th century, developments in chemistry, electron microscopy, genetics, computer science, functional brain imaging, and other fields progressively opened new windows into brain structure and function. In the United States, the 1990s were officially designated as the "Decade of the Brain
Decade of the Brain
The Decade of the Brain was a designation for 1990-1999 by U.S. president George H. W. Bush as part of a larger effort involving the Library of Congress and the National Institute of Mental Health of the National Institutes of Health "to enhance public awareness of the benefits to be derived from...

" to commemorate advances made in brain research, and to promote funding for such research.

In the 21st century, these trends have continued, and several new approaches have come into prominence, including multielectrode recording
Multielectrode array
Multielectrode arrays or microelectrode arrays are devices that contain multiple plates or shanks through which neural signals are obtained or delivered, essentially serving as neural interfaces that connect neurons to electronic circuitry...

, which allows the activity of many brain cells to be recorded all at the same time; genetic engineering
Genetic engineering
Genetic engineering, also called genetic modification, is the direct human manipulation of an organism's genome using modern DNA technology. It involves the introduction of foreign DNA or synthetic genes into the organism of interest...

, which allows molecular components of the brain to be altered experimentally; and genomics
Genomics
Genomics is a discipline in genetics concerning the study of the genomes of organisms. The field includes intensive efforts to determine the entire DNA sequence of organisms and fine-scale genetic mapping efforts. The field also includes studies of intragenomic phenomena such as heterosis,...

, which allows variations in brain structure to be correlated with variations in DNA properties.

See also



Further reading