Slope stability probability classification
Encyclopedia
The slope stability probability classification (SSPC) system is a rock mass classification
Rock mass classification
Rock mass classification systems are used for various engineering design and stability analysis. These are based on empirical relations between rock mass parameters and engineering applications, such as tunnels, slopes, foundations, and excavatability...

 system for slope engineering and slope stability
Slope stability
The field of slope stability encompasses the analysis of static and dynamic stability of slopes of earth and rock-fill dams, slopes of other types of embankments, excavated slopes, and natural slopes in soil and soft rock...

 assessment. The system is a three-step classification: ‘exposure’, ‘reference’, and ‘slope’ rock mass classification with conversion factors between the three steps depending on existing and future weathering and damage due to method of excavation. The stability of a slope is expressed as probability for different failure mechanisms.

A rock mass is classified following a standardized set of criteria in one or more exposures (‘exposure’ classification). These values are converted per exposure to a ‘reference’ rock mass by compensating for the degree of weathering in the exposure and the method of excavation that was used to make the exposure, i.e. the ‘reference’ rock mass values are not influenced by local influences such as weathering and method of excavation. A new slope can then be designed in the ‘reference’ rock mass with compensation for the damage due to the method of excavation to be used for making the new slope and compensation for deterioration of the rock mass due to future weathering (the ‘slope’ rock mass). If the stability of an already existing slope is assessed the ‘exposure’ and ‘slope’ rock mass values are the same.

The failure mechanisms are divided in orientation dependent and orientation independent. Orientation dependent failure mechanisms depend on the orientation of the slope with respect to the orientation of the discontinuities in the rock mass, i.e. sliding (plane and wedge sliding) and toppling failure. Orientation independent relates to the possibility that a slope fails independently from its orientation, e.g. circular failure completely through newly formed discontinuities in intact rock blocks, or failing partially following existing discontinuities and partially new discontinuities.

In addition the shear strength along a discontinuity ('sliding criterion') and 'rock mass cohesion' and 'rock mass friction' can be determined.
The system has been used directly or modified in various geology and climate environments throughout the world. The system has been modified for slope stability assessment in open pit coal mining.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK