Lift-off (microtechnology)
Encyclopedia
Lift-off process in microstructuring technology
Microtechnology
Microtechnology is technology with features near one micrometre .In the 1960s, scientists learned that by arraying large numbers of microscopic transistors on a single chip, microelectronic circuits could be built that dramatically improved performance, functionality, and reliability, all while...

 is a method of creating structures (patterning) of a target material on the surface of a substrate (ex. wafer
Wafer (electronics)
A wafer is a thin slice of semiconductor material, such as a silicon crystal, used in the fabrication of integrated circuits and other microdevices...

) using a sacrificial material (ex. Photoresist
Photoresist
A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface.-Tone:Photoresists are classified into two groups: positive resists and negative resists....

).
It is an additive technique as opposed to more traditional subtracting technique like etching
Etching (microfabrication)
Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module, and every wafer undergoes many etching steps before it is complete....

.
The scale of the structures can vary from the nanoscale up to the centimeter scale or further, but are typically of a micrometric dimensions
Micrometre
A micrometer , is by definition 1×10-6 of a meter .In plain English, it means one-millionth of a meter . Its unit symbol in the International System of Units is μm...

.

Process

An inverse pattern is first created in the sacrificial stencil layer (ex. photoresist
Photoresist
A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface.-Tone:Photoresists are classified into two groups: positive resists and negative resists....

), deposited on the surface of the substrate. This is done by etching openings through the layer so that the target material can reach the surface of the substrate in those regions, where the final pattern is to be created. The target material is deposited over the whole area of the wafer, reaching the surface of the substrate in the etched regions and staying on the top of the sacrificial layer in the regions, where it was not previously etched. When the sacrificial layer is washed away (photoresist in a solvent
Solvent
A solvent is a liquid, solid, or gas that dissolves another solid, liquid, or gaseous solute, resulting in a solution that is soluble in a certain volume of solvent at a specified temperature...

), the material on the top is lifted-off and washed together with the sacrificial layer below. After the lift-off, the target material remains only in the regions where it had a direct contact with the substrate.
  • Substrate is prepared
  • Sacrificial layer is deposited and an inverse pattern is created (ex. photoresist
    Photoresist
    A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface.-Tone:Photoresists are classified into two groups: positive resists and negative resists....

     is exposed and developed. Depending on the resist various methods can be used, such as Extreme ultraviolet lithography
    Extreme ultraviolet lithography
    Extreme ultraviolet lithography is a next-generation lithography technology using an extreme ultraviolet wavelength, currently expected to be 13.5 nm.-EUVL light source:...

     - EUVL or Electron beam lithography
    Electron beam lithography
    Electron beam lithography is the practice of emitting a beam of electrons in a patterned fashion across a surface covered with a film , and of selectively removing either exposed or non-exposed regions of the resist...

     - EBL. The photoresist is removed in the areas, where the target material is to be located, creating an inverse pattern.)
  • Target material (usually a thin metal layer) is deposited (on the whole surface of the wafer). This layer covers the remaining resist as well as parts of the wafer that were cleaned of the resist in the previous developing step.
  • The rest of the sacrificial material (ex. photoresist) is washed out together with parts of the target material covering it, only the material that was in the "holes" having direct contact with the underlying layer (substrate/wafer) stays

Advantages

Lift-off is applied in cases where a direct etching of structural material would have undesirable effects on the layer below.

Disadvantages

There are 3 major problems with lift-off:
Retention
This is the worst problem for liftoff processes. If this problem occurs, unwanted parts of the metal layer will remain on the wafer. This can be caused by different situations. The resist below the parts that should have been lifted off could not have dissolved properly. Also, it is possible that the metal has adhered so well to the parts that should remain that it prevents lift-off.

Ears
When the metal is deposited, and it covers the sidewalls of the resist, "ears" can be formed. These are made of the metal along the sidewall which will be standing upwards from the surface. Also, it is possible that these ears will fall over on the surface, causing an unwanted shape on the substrate.

If the ears remain on the surface, the risk remains that these ears will go through different layers put on top of the wafer and they might cause unwanted connections.
Redeposition
During the liftoff process it is possible that particles of metal will become reattached to the surface, at a random location. It is very difficult to remove these particles after the wafer has dried.

Use

Lift-off process is used mostly to create metallic interconnections.

There are several types of lift-off processes, and what can be achieved depends highly on the actual process being used. Very fine structures have been used using EBL
Electron beam lithography
Electron beam lithography is the practice of emitting a beam of electrons in a patterned fashion across a surface covered with a film , and of selectively removing either exposed or non-exposed regions of the resist...

, for instance. The lift-off process can also involve multiple layers of different types of resist. This can for instance be used to create shapes that will prevent side walls of the resist being covered in the metal deposition stage.

External links

  • http://www.siliconfareast.com/lift-off.htm
  • https://www.mems-exchange.org/catalog/lift_off/
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK