Internist-I
Encyclopedia
INTERNIST-I was a broad-based computer-assisted diagnostic tool developed in the early 1970s at the University of Pittsburgh
University of Pittsburgh
The University of Pittsburgh, commonly referred to as Pitt, is a state-related research university located in Pittsburgh, Pennsylvania, United States. Founded as Pittsburgh Academy in 1787 on what was then the American frontier, Pitt is one of the oldest continuously chartered institutions of...

 as an educational experiment. The system was designed to capture the expertise of just one man, Jack D. Myers, MD, chairman of internal medicine in the University of Pittsburgh School of Medicine
University of Pittsburgh School of Medicine
The University of Pittsburgh School of Medicine is a medical school located in Pittsburgh, Pennsylvania, USA. The School of Medicine is also known as Pitt Med, and is ranked as a “top medical school” by U.S. News & World Report in the publication's categories of research and primary care...

. The Division of Research Resources and the National Library of Medicine funded INTERNIST-I. Other major collaborators on the project included Randolph A. Miller and Harry E. Pople.

Development

INTERNIST-I is the successor of the DIALOG system. For ten years, INTERNIST-I was the centerpiece of a Pittsburgh course entitled “The Logic of Problem-Solving in Clinical Diagnosis.” In consultation with faculty experts, much responsibility for data entry and updating of the system fell to the fourth-year medical students enrolled in the course. These students encoded the findings of standard clinicopathological reports. By 1982, the INTERNIST-I project represented fifteen person-years of work, and by some reports covered 70-80% of all the possible diagnoses in internal medicine
Internal medicine
Internal medicine is the medical specialty dealing with the prevention, diagnosis, and treatment of adult diseases. Physicians specializing in internal medicine are called internists. They are especially skilled in the management of patients who have undifferentiated or multi-system disease processes...

.

Data input into the system by operators included signs and symptoms, laboratory results, and other items of patient history. The principal investigators on INTERNIST-I did not follow other medical expert systems designers in adopting Bayesian
Bayesian statistics
Bayesian statistics is that subset of the entire field of statistics in which the evidence about the true state of the world is expressed in terms of degrees of belief or, more specifically, Bayesian probabilities...

 statistical models or pattern recognition
Pattern recognition
In machine learning, pattern recognition is the assignment of some sort of output value to a given input value , according to some specific algorithm. An example of pattern recognition is classification, which attempts to assign each input value to one of a given set of classes...

. This was because, as Myers explained, “The method used by physicians to arrive at diagnoses requires complex information processing which bears little resemblance to the statistical manipulations of most computer-based systems.” INTERNIST-I instead used a powerful ranking algorithm to reach diagnoses in the domain of internal medicine. The heuristic rules that drove INTERNIST-I relied on a partitioning algorithm to create problems areas, and exclusion functions to eliminate diagnostic possibilities.

These rules, in turn, produce a list of ranked diagnoses based on disease profiles existing in the system’s memory. When the system was unable to make a determination of diagnosis it asked questions or offered recommendations for further tests or observations to clear up the mystery. INTERNIST-I worked best when only a single disease was expressed in the patient, but handled complex cases where more than one disease was present poorly. This was because the system exclusively relied on hierarchical or taxonomic decision-tree logic, which linked each disease profile to only one “parent” disease class.

Use of INTERNIST-I

By the late 1970s, INTERNIST-I was in experimental use as a consultant program and educational “quizmaster” at Presbyterian-University Hospital in Pittsburgh. INTERNIST-I’s designers hoped that the system could one day become useful in remote environments—rural areas, outer space, and foreign military bases, for instance—where experts were in short supply or unavailable. Still, physicians and paramedics wanting to use INTERNIST-I found the training period lengthy and the interface unwieldy. An average consultation with INTERNIST-I required about thirty to ninety minutes, too long for most clinics. To meet this challenge, researchers at nearby Carnegie-Mellon University wrote a program called ZOG that allowed those unfamiliar with the system to master it more rapidly. INTERNIST-I never moved beyond its original status as a research tool. In one instance, for example, a failed attempt to extract “synthetic” case studies of “artificial patients” from the system’s knowledge base in the mid-1970s overtly demonstrated its “shallowness” in practice.

INTERNIST-I/QMR

In the first version of INTERNIST-I (completed in 1974) the computer program “treated the physician as unable to solve a diagnostic problem,” or as a “passive observer” who merely performed data entry. Miller and his collaborators came to see this function as a liability in the 1980s, referring to INTERNIST-I derisively as an example of the outmoded “Greek Oracle” model for medical expert systems. In the mid-1980s INTERNIST-I was succeeded by a powerful microcomputer-based consultant developed at the University of Pittsburgh called Quick Medical Reference (QMR). QMR, meant to rectify the technical and philosophical deficiencies of INTERNIST-I, still remained dependent on many of the same algorithms developed for INTERNIST-I, and the systems are often referred to together as INTERNIST-I/QMR. The main competitors to INTERNIST-I included CASNET, MYCIN
Mycin
In artificial intelligence, MYCIN was an early expert system designed to identify bacteria causing severe infections, such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for patient's body weight — the name derived from the antibiotics themselves, as many...

, and PIP
Pip
-Biology and medicine:* Phosphatidylinositol phosphate* Prolactin-induced protein* Proximal interphalangeal joint* Patient intelligence panel-Business and finance:* Percentage in point , a currency exchange rate fluctuation...

.

See also

  • Transcript of an INTERNIST-I Consultation
  • CADUCEUS (expert system)
    CADUCEUS (expert system)
    CADUCEUS was a medical expert system finished in the mid-1980s by Harry Pople , building on Pople's years of interviews with Dr. Jack Meyers, one of the top internal medicine diagnosticians and a professor at the University of Pittsburgh...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK