Blast wave
Encyclopedia
A blast wave in fluid dynamics
Fluid dynamics
In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the natural science of fluids in motion. It has several subdisciplines itself, including aerodynamics and hydrodynamics...

 is the pressure and flow resulting from the deposition of a large amount of energy in a small very localised volume. The flow field can be approximated as a lead shock wave
Shock wave
A shock wave is a type of propagating disturbance. Like an ordinary wave, it carries energy and can propagate through a medium or in some cases in the absence of a material medium, through a field such as the electromagnetic field...

, followed by a 'self-similar' subsonic flow field. In simpler terms, a blast wave is an area of pressure expanding supersonically outward from an explosive core. It has a leading shock front of compressed gases. The blast wave is followed by a blast wind of negative pressure, which sucks items back in towards the center. The blast wave is harmful especially when one is very close to the center or at a location of constructive interference. High explosives, which detonate
Detonation
Detonation involves a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations are observed in both conventional solid and liquid explosives, as well as in reactive gases...

, generate blast waves.

Sources of Blast Waves

High-order explosives (HE) are more powerful than low-order explosives (LE). HE detonate
Detonation
Detonation involves a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations are observed in both conventional solid and liquid explosives, as well as in reactive gases...

 to produce a defining supersonic over-pressurization shock wave. Several sources of HE include Trinitrotoluene, C-4, Semtex, nitroglycerin, and ammonium nitrate fuel oil (ANFO). LE deflagrate
Deflagration
Deflagration is a term describing subsonic combustion that usually propagates through thermal conductivity; hot burning material heats the next layer of cold material and ignites it. Most "fire" found in daily life, from flames to explosions, is deflagration...

 to create a subsonic explosion and lack HE’s over-pressurization wave. Sources of LE include pipe bombs, gunpowder, and most pure petroleum-based incendiary bombs such as Molotov cocktails or aircraft improvised as guided missiles. HE and LE induce different injury patterns. Only HE produce true blast waves.

History

The classic flow solution—the so-called "similarity solution"—was independently devised by John von Neumann
John von Neumann
John von Neumann was a Hungarian-American mathematician and polymath who made major contributions to a vast number of fields, including set theory, functional analysis, quantum mechanics, ergodic theory, geometry, fluid dynamics, economics and game theory, computer science, numerical analysis,...

 and a British mathematician Geoffrey Ingram Taylor
Geoffrey Ingram Taylor
Sir Geoffrey Ingram Taylor OM was a British physicist, mathematician and expert on fluid dynamics and wave theory. His biographer and one-time student, George Batchelor, described him as "one of the most notable scientists of this century".-Biography:Taylor was born in St. John's Wood, London...

 during World War II
World War II
World War II, or the Second World War , was a global conflict lasting from 1939 to 1945, involving most of the world's nations—including all of the great powers—eventually forming two opposing military alliances: the Allies and the Axis...

. After the war, the similarity solution was published by three other authors—L. I. Sedov, R. Latter, and J. Lockwood-Taylor—who had discovered it independently.

Since the early theoretical work more than 50 years ago, both theoretical and experimental studies of blast waves have been ongoing.

Characteristics and properties of blast waves

The simplest form of a blast wave has been described and termed the Friedlander waveform. It occurs when a high explosive detonates
Detonation
Detonation involves a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations are observed in both conventional solid and liquid explosives, as well as in reactive gases...

 in a free field, that is, with no surfaces nearby with which it can interact.
Blast waves have properties predicted by the physics of waves. For example they can diffract
Diffraction
Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

 through a narrow opening, and refract
Refraction
Refraction is the change in direction of a wave due to a change in its speed. It is essentially a surface phenomenon . The phenomenon is mainly in governance to the law of conservation of energy. The proper explanation would be that due to change of medium, the phase velocity of the wave is changed...

 as they pass through materials. Like light or sound waves, when a blast wave reaches a boundary between two materials, part of it is transmitted, part of it is absorbed, and part of it is reflected. The impedances
Acoustic impedance
The acoustic impedance at a particular frequency indicates how much sound pressure is generated by a given air vibration at that frequency. The acoustic impedance Z is frequency dependent and is very useful, for example, for describing the behaviour of musical wind instruments...

 of the two materials determine how much of each occurs.

The equation for a Friedlander waveform describes the pressure of the blast wave as a function of time:


where Ps is the peak pressure and t* is the time at which the pressure first crosses the horizontal axis (before the negative phase).

Blast waves will wrap around objects and buildings. Therefore, persons or objects behind a large building are not necessarily protected from a blast that starts on the opposite side of the building. Scientists use sophisticated mathematical models to predict how objects will respond to a blast in order to design effective barriers and safer buildings.

Mach Stem Formation

Mach stem formation occurs when a blast wave reflects off of the ground and the reflection catches up with the original shock front, therefore creating a high pressure zone that extends from the ground up to a certain point called the triple point at the edge of the blast wave. Anything in this area experiences peak pressures that can be several times higher than the peak pressure of the original shock front.

Constructive and destructive interference

In physics, interference is the meeting of two correlated waves and either increasing or lowering the net amplitude, depending on whether it is constructive or destructive interference. If a crest of a wave meets a crest of another wave at the same point then the crests interfere constructively and the resultant crest wave amplitude is increased; forming a much more powerful wave than either of the beginning waves. Similarly two troughs make a trough of increased amplitude. If a crest of a wave meets a trough of another wave then they interfere destructively, and the overall amplitude is decreased; thus making a wave that is much smaller than either of the parent waves.

The formation of a mach stem is one example of constructive interference. Whenever a blast wave reflects off of a surface, such as a building wall or the inside of a vehicle, different reflected waves can interact with each other to cause an increase in pressure at a certain point (constructive interference) or a decrease (destructive interference). In this way the interaction of blast waves is similar to that of sound waves or water waves.

How blast waves cause damage

Blast waves cause damage by a combination of the severe condensing of the air in front of the wave (forming a shock front) and the subsequent wind that follows. A blast wave travels faster than the speed of sound and the passage of the shock wave usually only lasts a few milliseconds. Like other types of explosions, a blast wave can also cause damage to things and people by the blast wind, debris, and fires. The original explosion will send out fragments that travel very fast. Debris and sometimes even people can get swept up into a blast wave, causing more injuries such as penetrating wounds, impalement, broken bones, or even death. The blast wind is the area of low pressure that causes debris and fragments to actually rush back towards the original explosions. The blast wave can also cause fires or even secondary explosions by a combination of the high temperatures that result from detonation and the physical destruction of fuel-containing objects.

Bombs

In response to an inquiry from the British MAUD Committee
MAUD Committee
The MAUD Committee was the beginning of the British atomic bomb project, before the United Kingdom joined forces with the United States in the Manhattan Project.-Frisch & Peierls:...

, G. I. Taylor estimated the amount of energy that would be released by the explosion of an atomic bomb in air. He postulated that for an idealized point source of energy, the spatial distributions of the flow variables would have the same form during a given time interval, the variables differing only in scale. (Thus the name of the "similarity solution.") This hypothesis allowed the partial differential equations in terms of r (the radius of the blast wave) and t (time) to be transformed into an ordinary differential equation in terms of the similarity variable ,

where is the density of the air and is the energy that's released by the explosion. This result allowed G. I. Taylor to estimate the yield of the first atomic explosion in New Mexico in 1945 using only photographs of the blast, which had been published in newspapers and magazines. The yield of the explosion was determined by using the equation: ,

where is a dimensionless constant that is a function of the ratio of the specific heat of air at constant pressure to the specific heat of air at constant volume. In 1950, G. I. Taylor published two articles in which he revealed the yield E of the first atomic explosion, which had previously been classified and whose publication therefore caused a great to-do.

While nuclear explosions are among the clearest examples of the destructive power of blast waves, blast waves generated by exploding conventional bombs and other weapons made from high explosives have been used as weapons of war due to their effectiveness at creating polytraumatic injury. During World War II and the U.S.’s involvement in the Vietnam War, blast lung was a common and often deadly injury. Improvements in vehicular and personal protective equipment have helped to reduce the incidence of blast lung. However, as soldiers are better protected from penetrating injury and surviving previously lethal exposures, limb injuries, eye and ear injuries, and traumatic brain injuries have become more prevalent.

Astronomy

The so called Sedov-Taylor solution has become useful in astrophysics
Astrophysics
Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior...

. For example, it can be applied to quantify an estimate for the outcome from supernova
Supernova
A supernova is a stellar explosion that is more energetic than a nova. It is pronounced with the plural supernovae or supernovas. Supernovae are extremely luminous and cause a burst of radiation that often briefly outshines an entire galaxy, before fading from view over several weeks or months...

-explosions. The Sedov-Taylor expansion is also known as the 'Blast Wave' phase, which is an adiabatic expansion phase in the life cycle of supernova. The temperature of the material in a supernova shell decreases with time, but the internal energy of the material is always 72% of E0, the initial energy released. This is helpful for astrophysicists interested in predicting the behavior of supernova remnants.

The radius R of the blast wave is given as,
R = 14 (E0/n)1/5 t2/5 pc


where,
E0 is the initial energy,
t is the age
n is the surrounding medium density


The shock temperature is also given as,
T = 1.0×1010(E0/n) R−3 K

Research


Blast waves are generated in research environments using explosive or compressed-gas driven shock tubes
Shock tube
For the pyrotechnic initiator, see Shock tube detonatorThe shock tube is an instrument used to replicate and direct blast waves at a sensor or a model in order to simulate actual explosions and their effects, usually on a smaller scale...

 in an effort to replicate the environment of a military conflict to better understand the physics of blasts and injuries that may result, and to develop better protection against blast exposure. Blast waves are directed against structures (such as vehicles), materials, and biological specimens or surrogates. High-speed pressure sensor
Pressure sensor
A pressure sensor measures pressure, typically of gases or liquids. Pressure is an expression of the force required to stop a fluid from expanding, and is usually stated in terms of force per unit area. A pressure sensor usually acts as a transducer; it generates a signal as a function of the...

s and/or high speed camera
High speed camera
A high speed camera is a device used for recording fast moving objects as a photographic image onto a storage media. After recording, the images stored on the media can be played back in slow-motion...

s are often used to quantify the response to blast exposure. Automated test devices (ATDs or test dummies
Crash test dummy
Crash test dummies are full-scale anthropomorphic test devices that simulate the dimensions, weight proportions and articulation of the human body, and are usually instrumented to record data about the dynamic behavior of the ATD in simulated vehicle impacts...

) initially developed for the automotive industry are being used, sometimes with added instrumentation, to estimate the human response to blast events. For examples, personnel in vehicles and personnel on demining teams have been simulated using these ATDs.

Combined with experiments, complex mathematical models have been made of the interaction of blast waves with inanimate and biological structures. Validated models are useful for “what if” experiments – predictions of outcomes for different scenarios. Depending on the system being modeled, it can be difficult to have accurate input parameters (for example, the material properties of a rate-sensitive material at blast rates of loading). Lack of experimental validation severely limits the usefulness of any numerical model.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK