Doing It Right
Encyclopedia
Doing It Right is a holistic
Holism
Holism is the idea that all the properties of a given system cannot be determined or explained by its component parts alone...

 approach to scuba diving
Scuba diving
Scuba diving is a form of underwater diving in which a diver uses a scuba set to breathe underwater....

. According to the DIR approach fundamental skills, teamwork, environmental and situational awareness, and the use of a highly optimized and streamlined (i.e. minimalistic) equipment configuration are the fundamentals of DIR diving. DIR proponents argue that through these essential elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies. This approach to diving encompasses specific equipment requirements, dive planning systems and team procedures.

History

The DIR approach (and name) evolved out of the Woodville Karst Plain Project
Woodville Karst Plain Project
The Woodville Karst Plain Project or WKPP, grew out of a cave diving research and exploration group established in 1985 and incorporated in 1990 to map the underwater cave systems underlying the Woodville Karst Plain, a area...

 (WKPP) in the mid-1990s, where the objective was conducting dives in a very high risk environment: Not only cave diving, but also deep, long duration and exploration of previously unknown parts of a very large cave system.

The origins of the approach to equipment taken by DIR practitioners can be found in the 'Hogarthian' equipment configuration attributed to William Hogarth Main. These individuals, along with many others, were attempting to develop equipment and procedures to allow the safer exploration of the deep submerged caves in the area.

Successfully carrying out the advanced diving required for deep cave penetration, as in the Woodville Karst Plain Project, places a great need to focus on the fundamentals of exactly how such diving should be carried out, and how equipment should be selected and configured for this type of diving, to maximise mission effectiveness and minimise risk.

The DIR approach was originally confined to cave diving, but soon spread to other forms of technical diving. Since recreational diving is the natural source of future technical divers, the DIR philosophy was extended into this field, although the recreational practices were already considered acceptably low risk by most diver certification agencies and insurance companies.

The phrase "Doing It Right" as applied to diving is thought to have appeared in 1995 in an article by George Irvine III. Irvine and Jarrod Jablonski
Jarrod Jablonski
Jarrod Jablonski is a pioneering technical diver and record setting cave diver. Jablonski is one of the main architects behind the 'Doing It Right' system of diving.-Background:...

 eventually formalized and popularized this approach as DIR, promoting its practises for all forms of scuba diving. Irvine's polemic style and inflexible stance led to a great deal of controversy and, while popularizing the style among some people, repelled many others. This has begun to ameliorate somewhat. , there are two US-based dive training organizations, Global Underwater Explorers
Global Underwater Explorers
Global Underwater Explorers is a scuba diving organization that provides education within recreational, technical and cave diving. It is a not-for-profit, membership organization, based in High Springs, Florida, United States....

 (GUE) and Unified Team Diving
Unified Team Diving
Unified Team Diving is a SCUBA diving training agency founded in 2008 to incorporate DIR/Hogarthian principles into SCUBA education at all levels.-History:...

 (UTD), and many independent dive instructors who teach a DIR style of diving. GUE renamed its 'DIR Fundamentals' course to 'GUE Fundamentals' in 2007, distancing itself somewhat from the acronym.

In particular:
Primary areas of focus
Aspect Rationale Implications
Team diving The logistical complexity of deep cave diving requires a team effort if goals are to be achieved.
  • Individuals may need to be swapped about in their assignments. This means that it is essential to have interchangability of divers. This in turn requires standardisation of diving equipment and procedures among all divers within the group from which the team may be made up.
  • It also makes “non-team” related diving particularly dangerous to do, when trying to achieve the many tasks needed for this type of diving.
Dive planning Deep cave diving requires a comprehensive and detailed plan. The parameters and dive profiles for such a plan generally require meticulous pre-dive computations and preparation to mitigate the considerable risk. Such planning is rendered pointless if it is not adhered to.
  • Equipment that only produces “on the fly” directives can be counterproductive and its use uncoordinated with respect to achieving overall plan objectives.
  • Similarly, the selection and use of ANY equipment item must be made within the context of OVERALL effectiveness of achieving dive goals
  • Technical diving/ Cave diving Deep, decompression diving is necessarily required to effect penetration diving on the WKPP. Extended dive duration and surveys of previously unexplored parts of the cave system exposed divers to unprecedented exposures. Diving of this type is subject to increased level of risk and increased risks require more stringent mitigation.
  • Equipment must be selected such that it is suitable for more advanced diving practise. Such equipment should be consistently reliable and offer adequate performance for the more extreme environments it may be used in. It is proposed that this equipment will also be suitable for less advanced activities.
  • Redundancy in equipment configuration is necessary in main life-support systems. Part of this redundancy has to be provided by the diver, and part can be provided by the combined team.
  • Equipment must be minimised to only that which is essential to minimise failure modes and accomplish the tasks of the dive.
  • The large amount of equipment necessary for the extreme penetrations made it essential to rigorously optimise every aspect of equipment configuration and procedure to keep the task loading and equipment burden to a level that made the dives physically practicable at a personally acceptable level of risk.

  • Tenets

    A holistic approach to diving is a central DIR principle. DIR is a system and as such equipment configuration should be considered within the context of the whole philosopy, and the ultimate aims of ensuring safety, efficiency and enjoyment. Diving equipment is viewed as only one part of the diving activity. Most DIR proponents believe that the most important piece of dive equipment is the diver, followed by the team.

    Experience

    Experience is considered a key aspect of becoming a good diver. It is held to be the result of training and familiarity with the demands of the various environments. Training of fundamental skills by a suitably competent professional educator is recommended as the most effective route to gaining experience safely, however this is not a substitute for time spent in the water practicing and using the skills, as this will produce the familiarity and comfort of repetitive exposure, eventually allowing the diver to perform the skills without stress or delay, even in difficult circumstances.

    Ability

    Competence is a combination of knowledge, aptitude and practice of good technique. Knowledge and technique can be learned, and assiduous practice can compensate for lack of natural aptitude. Course training does not generally provide sufficient time to hone skills and develop the optimum level of knowledge, and therefore additional review and practice are usually necessary.

    Equipment

    DIR proponents say equipment configuration should be simple, streamlined, exactly sufficient or minimalistic and applicable to all diving situations, from shallow reef diving to long cave penetrations.

    Streamlinied equipment and standardised configuration

    The standard DIR equipment configuration is fairly well established.
    The configuration has been designed and evolved to work in all situations. The intention was to improve a diver's efficiency and overall convenience and minimise risk. The configuration is minimalist and streamlined, and equipment should not hang free, stick out or increase drag unneccesarily, or cause entanglement.

    Balance and trim

    The DIR rig is carefully weighted to ensure that the diver is not overweight but is able to maintain accurate depth and trim at any decompression stop. This requires assessment of how each component part fits into and affects the buoyancy characteristics of the configuration as a whole.

    Gas usage parameters

    The parameters for gas use recommended by DIR are relatively conservative. These include:
    • Equivalent narcotic depth (END) of less than 100fsw (30msw)
    • Partial pressure of oxygen (PO2) not exceeding 1.4 atm (1.4 bar) for the active sectors of a dive
    • Partial pressure of oxygen (PO2) not exceeding 1.6 atm (1,6 bar) for decompression stops.
    • Liberal use of helium together with the conservative use of oxygen to offset the toxic effects of oxygen, nitrogen and carbon dioxide
    • Standardised breathing gases are promoted to reduce the risk of choosing inappropriate mixtures, and to simplify the logistics of mixing gases and marking cylinders that will be used by a team. This makes decompression planning simpler and reduces the task loading when sharing gas in an emergency, as all divers in the team will have the same decompression plan.
    • Cylinders are marked only with the Maximum Operating Depth (MOD) in a clear and easily identifiable manner. This practice is used in conjunction with standardised mixtures as a simple and reliable identification procedure.

    Unified team

    The notion of a unified dive team is central to the DIR philosophy. A unified team acts in concert to preserve the safety of the team and meet the goals of the dive. All of the team's equipment and its consumables (i.e. breathing gas, batteries) are held in common and dedicated to the safety, comfort and dive goals of the team. In addition, each team member should be familiar with what all other team members are carrying.

    Divers of similar competence and preparation are grouped together to form a team which can provide a level of safety greater than is possible if they dive independently. By maintaining a similar high level of care and attention among the team members, the experience of diving as part of the team be more rewarding and satisfactory than diving without the support of such a team.

    Preparation

    The notion of preparation within the DIR ethos applies well before the divers approach the water. It encompasses personal physical fitness, mental fitness, rigorous planning and pre-dive safety drills and routines.

    Training

    • Age restrictions: Agencies which promote DIR will not train divers younger than either 16 (UTD) or 17 (GUE).

    Standardisation of safety procedures and drills

    There are several standardised procedures and safety drills developed by the DIR community. These include:
    • Breathing the primary — The primary regulator used during the dive for breathing the back gas is the long hose on the right cylinder valve. The secondary/backup regulator is on the left cylinder valve and is held under the chin on an elastic "necklace"
    • Bubble check — to ensure there are no leaks or before committing to the dive. Divers check each others equipment for bubbles indicating leaks. specifically around first stages, second stages, and gas hoses and fittings and make a general visual check that everything is in place.
    • S-Drill — short for safety drill — is a simulated donation of the long hose to ensure that it deploys freely and is routed correctly.
    • In a modified S-drill the long hose is deployed before entering the waterto make sure it's free.
    • In a full S-Drill the divers descend a few metres and perform simulated out of gas exercises so that they all get practice at sharing gas.

    • Valve Drill — to make sure the back gas cylinder and manifold valves are fully open and that the diver can open and close them.
    • In a modified valve drill the diver reaches back and checks that the valves are fully open.
    • In a full valve drill the valves are closed and re-opened in sequence and the regulators checked while a team member stands by in case of problems.


    Fundamental diving skills

    DIR holds that lack of basic diving skills is common in recreational and technical diving, and the lack of these skills results in stress, fatigue and occasionally fatalities. Poor technique is said to increase stress, and reduce ability to cope with emergencies, which often develop as an accumulation of poor technique and lack of situational awareness. Skill levels should be appropriate to the environment, planned dive profile and tasks.

    Unlike some other diver training and certification agencies, GUE is specific about the required standard of performance for the basic skills for a new diver, an advanced diver, and an advanced technical diver, and specifies the equipment the diver should be carrying during assessment in the latter case. This allows an objective assessment of skills. The diver and instructor can both agree whether the skill has been performed as required, and the diver has a specific goal to aim for while practising.

    General physical fitness

    DIR divers are expected to keep themselves physically fit, as this reduces the stressful effects of high levels of exertion, and provides the diver with a better chance of effectively dealing with a problem.
    Whilst all forms of diver training promote physical fitness, the DIR approach takes it furthest. DIR training agencies have much more demanding swimming ability requirements to start the courses, and mandate much higher degrees of continuing physical fitness.

    Mask clearing

    The DIR view is that it is essential that divers master this skill, even if it takes many repetitions, as inability to adequately clear the mask will lead to stress and distraction, and the dislodging of the mask during a stressful stage of a dive may then lead to panic.

    Buoyancy control

    Buoyancy control is considered both an essential skill and one of the most difficult for the novice to master. Lack of proper buoyancy control is likely to disturb or damage the surroundings, and is a source of additional and unnecessary physical effort to maintain precise depth, which also increases stress.

    Trim

    Trim is the diver's attitude in the water, in terms of balance and alignment with the direction of motion. Accurately controlled trim reduces swimming effort, as it reduces the sectional area of the diver passing through the water. A slight head down trim is recommended to reduce downthrust during finning, and this reduces silting and fin impact with the bottom. Bouyancy compensators and weighting systems that make horizontal trim difficult are deprecated for this reason. Systems are recommended that concentrate weight centrally and restrict weighting to what is actually needed to compensate for equipment buoyancy and use of gas during the dive.

    Gas management

    The DIR diver is required to be aware of remaining gas supply at all times, as this is the critical requirement for survival. The diver must be awareof how much gas is needed to return to the surtface from any point in the dive, and ensure that this, and a suitable safety margin, is available according to the dive plan.

    Finning technique

    Efficient propulsion is not only necessary for good gas endurance, but also for skilled maneuvering. The diver is required to master finning styles that are suitable for the different environments and circumstances, and fins must not only be suitable for performing the required finning techniques, but must provide sufficient thrust when needed, and minimise snagging on lines and other items. Overly flexible fins, hinged fins and split fins may be unable to provide these requirements, and are therefore considered an unacceptable handicap. Straps must not fail, and simple, snag free and reliable systems are required.

    Directional awareness

    The ability to find one's way around during a dive can be critical to survival. Navigation skills and techniques appropriate to the environment must be mastered. The dive plan must be understood and followed, and contingency plans should be available for the foreseeable deviations from the plan.

    Buddy skills

    DIR divers are required to be completely dedicated to the buddy system, primarily in the interest of safety, but also because failure to follow the expected procedures is likely to compromise the dive plan. The DIR buddy and his/her equipment are regarded as backup to the whole team, and provide necessary redundancy in case of equipment failure or other accident, without overburdening the divers with additional equipment.

    Communication

    Communication is central to buddy and team diving. DIR divers are required to be competent at underwater communication by hand signals and light signals, and to use them to ensure that they are always aware of the status of the rest of the team. DIR divers have an extended range of hand signals, some particularly relevant to overhead and decompression diving. Divers are expected to understand hand signals by touch in case of zero visibility.

    Equipment management

    Familiarity and comfort with equipment are considered important, as the diver should be able to perform necessary procedures quickly and effectively both for efficiency in normal diving, and for safety in emergencies, where any delay can increase the risk of escalation. The use of standardised equipment configurations and procedures is promoted as conducive to familiarity and thereby comfort. The recommended configurations are claimed to be optimised for both comfort and efficiency. DIR proponents indicate that poor equipment handling skills are often due to shortcomings in training programmes, but can also be a result of inherently sub-optimal configurations.

    Rescue and avoiding the necessity

    DIR proponents consider that rescue skills and training are necessary for all levels of diver, not only to perform a rescue in an emergency, but also because the training and skills are likely to reduce the risk of an emergency developing in the first place. Most emergencies are the result of bad planning, inadequate skills and lack of awareness culminating in a situation beyond the control of the diver. Self rescue occurs when the diver pre-empts the development of the emrgency by recognising the early stages and taking appropriate action. This is facilitated by the same training appropriate to rescue of another diver.

    The second way of preventing an emergency is monitoring by an aware and alert buddy, who may pick up signs of impending problems by situational awareness and skilled observation, one of the advantages of the unified team concept and effective communications within the team.

    Actual rescue, though desirable when necessary, often indicate a failure to manage minor problems and a lack of attention to signs of stress buildup. However, there are also occasions when things do go wrong in spite of good planning and procedures, and good training and well honed skills will contribute to a successful rescue effort, rather than a double fatality.

    The factors most likely to increase risk of an accident include:
    • Going beyond one's level of training. This can be mitigated by appropriate further training.
    • Going beyond one's personal level of comfort. This can be mitigated by working up towards dives outside of the current comfort zone in stages. Familiarity and practice will reduce the stress and improve awareness of detail. Maintaining an adequate standard of fitness can make a big difference to comfort.
    • Diving beyond the range of application of a gas mixture. Gas mixtures must be used that are suited to the dive, and it must be possible to positively identify the range of application for the mixture in use. Clear labeling of maximum operating depth is the most effective way of marking the cylinder. Opening the cylinder valve only after checking the MOD and testing the regulator is a positive method for ensuring that the correct gas is in use. Restricting END to 100 feet (30 m) will minimise the risk of nitrogen narcosis contributing to poor judgement and reduced efficiency.

    Stress on the diver can be caused by a large range of factors. It is not possible to eliminate them all, but a large number may be reduced by appropriate training, adequate skills and fitness, the use of suitable equipment in effective configurations, and effective teamwork and communications. In effect, this is the purpose of the DIR system.

    Equipment and configuration

    DIR equipment choice and equipment configuration should be considered together, as the two are philosophically inseparable. A change to one item of equipment may have complex consequences for the entire configuration and for the procedures which depend to a large degree on that equipment configuration. These consequences must be analysed before making a change. This is not to say that DIR equipment and configuration is immutable and can not be improved, but that all the consequences to the system must be considered when a variation is contemplated, so that knock-on effects can be avoided.

    The basic principle of DIR diving also includes familiarity of all divers in the team with all equipment used by the team, and all the procedures intended to be used by the team, and that interchangeability of DIR divers between teams is highly desirable. The natural consequence is that changes are not easily accepted unless very well motivated. This may be interpreted as inflexibility by persons who do not analyse the philosophy of the system.

    When there is a choice between two items of equipment with the same purpose, and one is clearly better than the other for a reason that affects risk and safety, the DIR philosophy insists that only use of the safer item is doing it right.

    The configurations and procedures recommended by the DIR proponents did not spring into existence fully formed and perfect, they were developed, largely by trial and error, and significantly by William Hogarth Main, who continues experimenting with configurations and equipment in the interests of improving the system.

    The DIR equipment system can be described as minimalist. Items of equipment that do not serve a useful purpose on a dive are considered a liability. Redundancy is provided where necessary within the personal equipment of the diver, and where possible by availability of team equipment. Multiple redundancy across personal and team equipment is only resorted to when necessary.

    Streamlining and maintaining a low profile and cross sectional area are important considerations but effectiveness and robust applicability to a wide range of environments are possibly more important, as they allow a basic core configuration which is effective in virtually any recreational diving situation, and allow standardisation of procedures, which in turn allows the diving team to be put together from similarly trained and equipped divers, who will integrate more easily into an effective team. In this context, streamlining includes the aspect of reducing hydrodynamic drag when swimming, but more importantly, the reduction of entanglement and entrapment hazards due to equipment components to a minimum.

    This philosophy does not preclude the use of equipment that is necessary for a special task, but would be applied to the choice of the equipment and how it is transported and deployed.

    Harness

    The recommended harness is based on a stainless steel or aluminium backplate. The harness itself is made from a single length of webbing, and the use of quick release buckles on the shoulder straps is disapproved on the basis that they are unreliable and a possible failure point. The waist band, however is fastened with a stainless steel quick release buckle, which apparently is acceptable in that position. A crotch strap with a loop in front is fitted to the base of the backplate and is secured by passing the waist belt buckle through it before fastening the buckle to the other side, relying on the same buckle for security. The buckle is offset to the right to reduce the risk of being opened inadvertently by the crotch strap loop.

    The approved configuration of harness carries only one D-ring on each side of the chest on the shoulder straps, one D-ring at the left hip on the waist belt and two D-rings on the crotch strap. The area below the tanks is considered suitable for storing equipment such as reels, lift bags and reserve scooters (sic), clipped to a D-ring mounted high at the back of the crotch strap, but not the light battery canister. The front D-ring of the crotch strap is not intended for storage, and is used only for connecting the tow-line of a DPV (scooter).

    Buoyancy control

    Buoyancy control involves the balance between the buoyancy of the various items of equipment during the course of a dive. The main variables are suit buoyancy, which is usually significantly positive, and may vary with depth; cylinder buoyancy, which may vary from significantly negative to slightly positive, and will increase during the dive as breathing gas is consumed; harness and accessories, which are usually all slightly to significantly negative; ballast weights, which are a constant negative; and the buoyancy compensator, which is adjustably positive, and is used to compensate for the combined effect of the other equipment.

    Buoyancy compensators

    In keeping with the minimalist philosophy, buoyancy compensators should be only as large as is necessary to provide neutral buoyancy at any point in the dive. This should not exceed about 65 pounds (29.5 kg) for twin cylinders or 30 pounds (13.6 kg) for single cylinders, on the premise that this would be evidence that the rig is unbalanced and unsafe, as the diver should be able to drop excess weight and swim up without a functioning buoyancy compensator.

    The corrugated hose should be long enough to easily dump air from the bladder and no longer, as this makes it difficult to streamline.

    Dual bladder buoyancy compenators are considered both unneccessary and unsafe. Unneccessary in that there are alternative methods available to a correctly rigged diver to compensate for a defective BC, and unsafe in that there is no obvious way to tell which bladder is holding air, and a leak into the secondary bladder may go unnoticed until the buoyancy has increased to the extent that the diver is unable to stop the ascent, while struggling to empty the air from the wrong bladder. Monitoring the air content of two bladders is unneccessary additional task loading, which detracts attention from other matters.

    The inflator mechanism must not be a high flow type. It is easier to deal with a runaway inflation on a low flow rate inflator.

    Long hose

    Required in overhead and decompression diving as it simplifies air sharing, thus reducing risk. It is always mounted to the right cylinder valve post. Optional in shallow, open water diving.
    Short hose

    The secondary regulator hose length should be no longer than necessary to breathe comfortably and move the head normally.
    Stage regulators

    Stage regulators are fitted with a submersible pressure gauge on a short (6 inches (152.4 mm)) hose, bent so the diver can read it easily, and held in place with bungie cord. The regulator hose is octopus length (about 1 metres (39 in)) and when not in use is secured to the cylinder under an elastic band. The cylinder valve is closed when not in use, though the regulator may be pressurised to keep water out before starting the dive.
    Knobs

    The knobs fitted to cylinder valves and manifolds should be able to withstand a moderate impact without fracturing or bending the spindle and jamming. Hard plastic valves may be brittle and break under impact, and metal knobs are more likely to transfer the full impact to the spindle, thus a greater risk of bending or shearing the spindle and rendering the valve inoperable. If the valve has been rolled off at the same time, the gas supply will be isolated and unavailable to the diver These knobs are not approved. The approveded valve knob is hard rubber or non-brittle plastic, which will flex to absorb much of the impact energy, with a metal insert, so the connection to the spindle is less likely to strip. Spring loading of the valve knob can also absorb impact loads, but only from some directions.

    Stage and decompression cylinders

    A stage cylinder contains gas intended to extend bottom time. A decompression cylinder contains gas intended for use during decompression, usually a different mixture to the bottom gas. Externally the equipment is basically identical, except for the marking identifying the contents by maximum operating depth.

    The DIR requirement for stage and decompression cylinders that will be carried during the dive is that they should be aluminium for reasons of near-neutral buoyancy. The cylinders should be rigged with stainless steel bolt snaps of a size to allow easy operation. If gloves are worn in cold water, a large snap will be needed. The snaps must be attached to a line clamped about halfway along the cylinder. The upper snap is attached to the line near the neck and close to the tank, and the lower snap to the line that extends beyond the clamp. ¼" line and stainless steel hose clamps are standard. The distance between the snaps should be about 16".

    The cylinder is carried clipped to the shoulder and hip D-rings on the left side, and should be held close at the shoulder and relatively loose at the hip, to allow it to find a streamlined position at the diver's side. It must be possible to cut the cylinder free if the snaps should jam.
    Cylinder must be marked with Maximum Operating Depth on both sides where it can be seen by the diver and others in the team. Other markings are considered extraneous.

    Primary light

    This is conventionally a canister light with a Goodman handle light head. The Goodman handle allows the diver to direct the beam of the light while leaving the hand free to perform other functions. The principle of only carrying equipment that is necessary would make the primary light a requirement on dives where a light will be needed, but not otherwise. However even in good visibility a powerful light can enhance the dive by restoring full colour at depth. The primary light would be optional on well illuminated recreational dives.

    Backup lights

    Backup lights are carried where they are unlikely to snag, and cause minimal drag, but can be reached and operated by one hand. Two are required for overhead diving.

    Variation to suit the environment

    When the DIR equipment configuration is used in different environments, details of the equipment will change to suit, without compromising the basic concepts.
    • In cold water, dry suits, hoods, gloves are substituted for or added to wet suits
    • Overhead (cave or wreck penetration) diving requires additional lights (total of 1 primary, 2 backups)
    • Shallow open water allows single cylinder and smaller volume buoyancy compensator, Primary hose length may be reduced as there is no requirement for single file transit through small spaces.

    Controversy

    The rise of DIR from a local cave diving group of enthusiasts to a philosophy of diving followed by thousands, has been marked by persistent controversy. Part of this is due to sub-optimal public relations by some leaders and followers of the movement. Those who have had the most to say in public have often been least diplomatic in their criticism of both mainstrean recreational and technical diving procedure, and the more obviously loose cannons of the opposing technical diving schools of thought.

    Public relations

    The core of the controversy surrounding DIR is in the phrase "Doing It Right". If a group is DIR, then all who are not doing things the DIR way are considered to be 'Doing it Wrong'. The use of the term 'stroke' to describe non-DIR divers has exacerbated tensions.

    [P]ossibly the most important piece of wisdom in the diving world, and is something we should all apply to all of our diving. It is, simply, 'Don't dive with strokes.'

    The term 'stroke' refers to someone who, knowing there is a better system, chooses to dive in a less than optimal way. It applies to those instructors who encourage students (who know no better) to exercise Personal Preference, in order to sell more equipment; it applies to those who don't plan their dives; those who dive beyond their abilities; who dive deep on air; who take unnecessary risks; who do big dives using unfamiliar gear; who's only reason for diving is depth.

    Diving with strokes moves us into an area where our safety is no longer in our own hands. Strokes are sometimes highly 'qualified'. Often they seem very confident - usually because they have no concept of the danger they are getting themselves, and you, into. — George M Irvine III


    This generated a lot of argument, mostly on various internet forums. Many of these arguments devolved rapidly into braggadacio, name calling and foul language. The terms used in such accusatory arguments include:
    • Strokery: the condition of being a non-DIR diver; statements supporting non-DIR points of view
    • Strokeslamming: severe criticism of non-DIR divers or of their opinions


    There is no extant empiricism proving the DIR approach better than any other approach, but proponents will point to the safety record and achievements of the WKPP,
    the 1999 GUE Britannic expedition,
    the Mexican Cave Exploration Project,
    and the recent exploration of the German aircraft carrier Graf Zeppelin
    German aircraft carrier Graf Zeppelin
    German aircraft carrier Graf Zeppelin was the lead ship in a class of two carriers ordered by the Kriegsmarine. She was the only aircraft carrier launched by Germany during World War II and represented part of the Kriegsmarine's attempt to create a well-balanced oceangoing fleet, capable of...

     by UTD divers
    as anecdotal evidence of the strength of the DIR system of diving.

    Unique features

    Several features of the DIR approach are at odds with more conventional forms of diver training.
    • Ratio decompression
      Ratio decompression
      Ratio decompression is a technique for calculating decompression schedules for scuba divers engaged in deep diving without using dive tables, decompression software or a dive computer...

       — In addition to using established algorithms for decompression diving, DIR utilizes "ratio decompression" which is a mathematical derivative of the Bühlmann decompression algorithm and the Varying Permeability Model
      Varying Permeability Model
      The Varying Permeability Model, Variable Permeability Model or VPM is an algorithm that is used to calculate the decompression stops needed for a particular dive profile. It was developed by D.E. Yount and others for use in professional diving and recreational diving...

      . RD is based on the common patterns of output from decompression programs which can be closely approximated by simple calculations in the diver's head. Because no dive computers use this methodology (and DIR eschews dive computers in any event), divers are taught to calculate decompression schedules on the fly (although they still plan their dives in advance). The degree to which RD is used varies; UTD depends on it heavily, and GUE teaches it as a backup method.

    "Doing It Wrongly"

    Some DIR divers refer to non-DIR diving practices as DIW (Doing It Wrongly), and the non-DIR-compliant divers as "strokes". The website frogkick.nl expresses an opinion that the practices and equipment are "faulty". This is a highly controversial matter in recreational and technical diving. Some of the tenets are logical, supported by evidence and may even be undisputed. Others are strongly disputed, and may lack robust evidence for the claims, or may be defended by inconsistent logic. Others again may be more applicable to specific aspects of technical diving, and not generally best possible practice:

    The following listed practices and equipment are some of those deprecated by DIR divers and/or training organisations:
    • Diving alone
      Solo diving
      Solo diving is the practice of scuba diving alone without a "dive buddy". Solo diving, once discouraged, is now beginning to gain acceptance among experienced divers who have skills in self-sufficiency and redundant backup equipment....

    • Diving with air deeper than 30m
    • Using the drysuit to adjust buoyancy:
      • The drysuit is unsuitable for compensating for weight changes due to gas consumption during the dive. The excessive volume in the suit has an undesirable effect on trim.
      • The suit provides poor support for the back gas cylinders compared to a wing, where the buoyancy is arranged where it is needed.
      • Dumping gas in an emergency is easier from the wing. The wing can dump in the inverted (feet up) position.
    • Badly-designed clips which may rust, or have sharp edges, or may open and lose the line unintentionally, and particularly clips which may snag a line and clip themselves on without the intention of the diver (suicide clips).:
    • Very large volume wings
      Backplate and wing
      thumb|right|A stainless steel backplate, wing and manifolded twinsetA backplate and wing , is a type of Scuba harness with buoyancy compensation device worn by scuba divers. Unlike most other BCDs, the backplate and wing is a modular system, in that it consists of separable components...

      ; double or dual bladder wings; wings with the expansion constrained by elastic cords.
    • Wing inflator hose too long or badly placed, causing difficulty getting hold of it in a hurry underwater as it may float out of view and also must be lifted higher than a short hose to effectively deflate the wing
    • Wing inflator with high flow rate supply hose and valve: These use a non-standard connector, and can fill the wing dangerously quickly if the valve sticks open.
    • Inflator with pull dump vave: This is an additional point of failure and if it leaks the buoyancy of the wing will be lost. If the pulling force to operate is excessive, the cable ties connecting the hose to the inflator valve and manifold may fail, the buoyancy will be lost and the wing can no longer be inflated.
    • Cylinder boot
      Cylinder boot
      A cylinder boot is a rubber or plastic cover for the bottom end of a diving cylinder. It is intended to make it easier to stand the cylinder on end on land, and to avoid the metal cylinder damaging tiles during initial training in swimming pools....

      s: These are useful in swimming pool training to avoid damaging tiles, but they increase the profile of the diver and add to hydrodynamic drag in swimming, may snag on wreckage or tight restrictions in a cave, and retain water, encouraging rusting of the bottom of the cylinder. In squeezing theough narrow places, the cylinder boot (and other things fastened to the side of the cylinder) may snag on things.
    • Netting round cylinders: These may catch on things, and do not improve the grip of tank bands and cambands.
    • Face sealed manifolds
      Manifold (scuba)
      In scuba diving a manifold is used to connect two diving cylinders with breathing gas, providing a greater amount of gas for longer dive times and greater safety due to redundancy...

       with single O-ring seals:(as in the upper image on this page) These are more likely to leak if impacted than barrel sealed manifolds with double O-ring seals (as in the middle image on this page)
    • Manifolds without isolation valves.
    • Cylinder or manifold valve knob extension operators: (slobwinders) They can be stiff, they can trail and catch on things, and can be difficult to find when needed.
    • Valve-protectors: (as shown on this page) They increase the diver's profile and may be worse line-traps than the valves. Some models make it more difficult to reach the valves.
    • Dive computer
      Dive computer
      A dive computer or decompression meter is a device used by a scuba diver to measure the time and depth of a dive so that a safe ascent profile can be calculated and displayed so that the diver can avoid decompression sickness.- Purpose :...

      s: They are useful but not a complete substitute for planning the dive's depths and times before the dive. Electronics may go wrong; batteries may run out.
    • Consoles (a group of instruments attached to the pressure gauge, supported by the high-pressure hose): Reaching for the console occupies a hand, increasing task loading. The console may trail and hit or snag on things. Depth and time instruments should be worn on the wrists where they can be seen easily during ascent without having to occupy the hand.
    • Helmet (for head protection - not air-filled breathing helmets):
      • The long regulator hose
        Breathing tube (in breathing apparatus)
        A breathing tube is a flexible tube for breathing through, as part of a scuba set or other breathing apparatus or a medical oxygen apparatus or anaesthetic apparatus They are wide, and usually corrugated to let the user's head move about without the tube pinching at...

         may catch on it.
      • It may cause difficulty changing the diving mask
        Diving mask
        A diving mask is an item of diving equipment that allows scuba divers, free-divers, and snorkelers to see clearly underwater. When the human eye is in direct contact with water as opposed to air, its normal environment, light entering the eye is refracted by a different angle and the eye is unable...

        .
    • Head mounted lights:
      • The regulator hose may catch on them.
      • They increase diver profile and hydrodynamic drag.
      • They increase risk of shining the light(s) in the buddy's eyes when looking at him.
    • Steel
      Steel
      Steel is an alloy that consists mostly of iron and has a carbon content between 0.2% and 2.1% by weight, depending on the grade. Carbon is the most common alloying material for iron, but various other alloying elements are used, such as manganese, chromium, vanadium, and tungsten...

       stage cylinders: their negative buoyancy causes trim problems and buoyancy difficulty if handed off.
    • Light battery canister carried on the back end of the back cylinders (butt mount):
      • The canister may interfere with the diver's leg action in swimming
      • It cannot be reached easily while diving,
      • It needs a long lamp lead, which may catch on things.
    • Gas switch block (as in the images on this page): Increased risk of a diver unintentionally switching to a wrong breathing gas.
    • Metal-to-metal connections: Cannot be cut free in an emergency if the connector jams.
    • Non-standard gas connections for demand valve hoses and inflator hoses for dry suits and buoyancy compensators; All team members' gas connections should be the same.
    • Swivelling gas connections: These provide an additional point of possible failure and are not needed with DIR hose routing.
    • Big knives: A small sharp knife is enough. For risk from nets and fishing lines, carry a net cutter
      Net cutter
      Net cutter means various devices used to cut nets:*Net cutter , used by some fisheries patrol vessels to cut intruding trawlers' net lines...

      . A knife on the leg or hip may snag when ditching the weight belt in an emergency, and may be out of reach. The knife should be accessible with either hand.
    • Buddy line
      Buddy line
      In scuba diving a buddy line is a line or rope physically tethering two scuba divers together underwater....

      . They get divers out of practice in keeping track of each other. If one diver surfaces in a panic, he may drag the other diver with him.
    • Snorkel: Generally, having a snorkel is claimed to be unnecessary because "it has no meaningful benefit", and its presence can create additional hazards because it can snag or catch on something (if on the head, it may create a hazard by catching on something and pull the mask off. If on the leg, it could snag when doing an emergency weight belt ditch, or snag on nets or lines). The lack of a snorkel when on the surface carries the advice to "swim on your back".
    • The HUB Airtrim stab jacket (which is a stabiliser-jacket buoyancy compensator with integrated regulators, weights, and inflation/deflation system):
      • Its distribution block and other parts contain several internal hoses and O-rings which may leak or burst in use.
      • The alternate air source is tucked away in a pocket and not accessible with one grasp.
      • "Airlock": This is a tradename for a pneumatic device to secure the air cylinder easilyhttp://www.diver.com.ph/thaidiver/oldthaidiver/EquipmentNews.htm. This adds to weight.
      • Too big and heavy and not well streamlined, so making more hydrodynamic drag in swimming.
      • All-in-one (integrated), so if one part fails, the whole is out of use during/pending repairs.
    • Posiedon brand regulators: These use non-standard hose end fittings.
    • Fancy fins: Split fins, hinged fins, fins with grooves and strap arrangements which can snag lines:
      • Split and hinged fins require more leg movement, which can stir up more silt. They are inefficient for frog-kick, reverse kicking, and rotational control.
      • The grooves, splits, strap ends and strap clips increase risk of snagging on lines and nets.
      • Complicated strap clips and adjustments provide more potential points of failure.
    • Buoyancy compensator inflation control devices with integrated secondary demand valve (such as the Scubapro Air 2). It can make adjusting buoyancy difficult. It is difficult to offer it to another diver to breathe from.
    • A small writing slate on a wrist: Not much space for writing. Extra baggage to clutter the arms. A "wet-notes" pad carried in a pocket is the recommended alternative.

    Variations and schisms within DIR

    However, as with all great movements, comes inevitable corruption and fragmentation. Today, DIR has spread to every corner of the globe, with self-appointed DIR groups emerging in dozens of different countries. Given their physical separation, their lack of centralized direction, their own specific agendas, beliefs, power struggles and constraints, these satellite groups cannot help but to promote a version of DIR that is uniquely their own. This version of "DIR" will likely have little resemblance to the original. This will be the case, however well-intentioned, however devoted to the founding principles of DIR, these satellites may be. — Jarrod Jablonski


    Comparisons between DIR and other recreational and technical diving groups

    Because DIR's insistence on standardization is frequently misunderstood, it sometimes becomes a source of tension among divers. This is because some see the insistence on uniformity as an indictment of practices that do not abide by DIR principles. However, there is nothing essentially hostile or critical about DIR; in its most basic form, it is ultimately pragmatic, promoting the concept of uniformity within and among teams of divers. However, to be fair, there is a certain degree of legitimate tension generated by imprudent advocates of DIR, who, having personally benefited from the system, take it upon them to become almost evangelical in the promotion of what they understand to be its tenets. However, this is not an intrinsic weakness of DIR; all successful movements have their zealots. — Jarrod Jablonski

    Use of snorkel

    Some opinions about snorkel use claim that:
    • The claimed lack of benefits likely stems from DIR's historical context of being cave diving
      Cave diving
      Cave diving is a type of technical diving in which specialized equipment is used to enable the exploration of caves which are at least partially filled with water. In the United Kingdom it is an extension of the more common sport of caving, and in the United States an extension of the more common...

       centric: caves rarely have air pockets to breathe from in the event of running out of breathing air.
    • Similarly, the snagging concerns also are cave diving centric: the head/mask concern stems from the snorkel interfering with the deployment of the 'long hose' regulator; the leg snag alludes to a risk of breaking a guideline used in cave diving (guide lines minimize the risk of getting lost from a silt-out).
    • Surface swims (dive exits) in cave diving often occur in highly-protected calm waters, where such floating is both of short duration/swim distance and the water surface is predictably benign due to lack of wind to make waves. Open water conditions are not as reliably benign.
    • Overall, the snorkel illustrates that what can be an excellent risk-assessment based decision for one specific diving environment (here, cave diving), such a conclusion is not automatically transferable to all other environments without due consideration.

    Trimix vs Deep air

    • The DIR approach requires the use of trimix below 100 feet (30.5 m). Most other agencies train divers to use "deep air" as deep as 185 feet (56.4 m). DIR is highly unusual in promoting the use of hyperoxic 30/30 trimix.

    Dive computer
    Dive computer
    A dive computer or decompression meter is a device used by a scuba diver to measure the time and depth of a dive so that a safe ascent profile can be calculated and displayed so that the diver can avoid decompression sickness.- Purpose :...

    s

    The DIR philosophy is trenchantly opposed to the use of dive computers. Most other technical diver training agencies recommend using two — a primary and a backup.
    Doing it Right: The Fundamentals of Better Diving page 119 lists 13 reasons why dive computers are bad. However, some of these appear strange - including the suggestion that they are expensive (modern dive computers are cheap, especially when compared with the cost of other equipment and diving gases recommended by the DIR approach), and too conservative (the approach to decompression promoted by DIR - ratio decompression - leads to decompression profiles of varying conservativeness, but are often very conservative).

    Team diving

    Most technical diving is focused on self reliance, and creates an emphasis on solo diving. DIR is solidly committed to buddy or "team" diving.

    Standardised equipment configuration

    DIR requires that all divers in the team should have standardised equipment configurations to facilitate assistance. Whereas other conventional training agencies promote customising equipment for particular scenarios and individuals (sometimes called "personal preference"), DIR strongly advocates everyone always being outfitted similarly (with the exception of task-specific equipment).
    Doing it Right: The Fundamentals of Better Diving page 67 says: "It is the perfect system in zero visibility as well as in crystal clear water. The DIR system requires no modification in order to function effectively and efficiently in different environments ... In freezing water these divers use dry gloves and thicker undergarments and possibly electric heat. Cold water divers use slightly larger bolt-snaps. Otherwise, exactly the same system is used whether the dive is below ice or in the balmy tropics."

    Redundancy

    While most training agencies preach the maximising of equipment redundancy, in certain areas DIR opposes equipment redundancy; for example, the DIR approach is against dual bladder buoyancy compensators.

    Age

    Most diver training agencies will train divers as young as 12, and some as young as 10 (or even 8 for pool diving). Agencies which promote DIR will not train divers younger than 16 (UTD) or 17 (GUE).

    See also


    Associated organizations

    • Global Underwater Explorers
      Global Underwater Explorers
      Global Underwater Explorers is a scuba diving organization that provides education within recreational, technical and cave diving. It is a not-for-profit, membership organization, based in High Springs, Florida, United States....

       (GUE)
    • Unified Team Diving
      Unified Team Diving
      Unified Team Diving is a SCUBA diving training agency founded in 2008 to incorporate DIR/Hogarthian principles into SCUBA education at all levels.-History:...

       (UTD)
    • National Association of Underwater Instructors
      National Association of Underwater Instructors
      The National Association of Underwater Instructors is a non-profit 501 association of SCUBA instructors. It was officially CE and ISO certified in May 2007 in all three diver levels and both instructor levels.-History:...

       (NAUI)
    • Woodville Karst Plain Project
      Woodville Karst Plain Project
      The Woodville Karst Plain Project or WKPP, grew out of a cave diving research and exploration group established in 1985 and incorporated in 1990 to map the underwater cave systems underlying the Woodville Karst Plain, a area...

       (WKPP)
    • Inner Space Explorers (ISE)
    • European Karst Plain Project (EKPP)

    External links

    The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
     
    x
    OK