X-ray welding
Encyclopedia
X-ray Welding is an experimental welding process that uses a high powered X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

 source to provide thermal energy required to weld
Weld
Weld most commonly refers to a joint formed by welding.Weld may also refer to:-People:* Weld family, an extended family of New England** Theodore Dwight Weld** Tuesday Weld* Weld-Blundell family* Cecil Weld-Forester, 1st Baron Forester...

 materials.

Introduction

Many advances in welding technology have resulted from the introduction of new sources of the thermal energy required for localised melting. These advances include the introduction of modern techniques such as gas tungsten arc
Gas tungsten arc welding
Gas tungsten arc welding , also known as tungsten inert gas welding, is an arc welding process that uses a nonconsumable tungsten electrode to produce the weld...

, gas-metal arc
Gas metal arc welding
Gas metal arc welding , sometimes referred to by its subtypes metal inert gas welding or metal active gas welding, is a semi-automatic or automatic arc welding process in which a continuous and consumable wire electrode and a shielding gas are fed through a welding gun...

, submerged-arc
Submerged arc welding
Submerged arc welding is a common arc welding process. Originally developed by the Linde - Union Carbide Company. It requires a continuously fed consumable solid or tubular electrode...

, electron beam
Electron beam welding
Electron beam welding is a fusion welding process in which a beam of high-velocity electrons is applied to the materials being joined. The workpieces melt as the kinetic energy of the electrons is transformed into heat upon impact, and the filler metal, if used, also melts to form part of the weld...

,
and laser beam
Laser beam welding
Laser beam welding is a welding technique used to join multiple pieces of metal through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates...

 welding processes. However, whilst these processes were able to improve stability, reproducibility, and accuracy of welding, they share a common limitation - the energy does not fully penetrate the material to be welded, resulting in the formation of a melt pool on the surface of the material.

To achieve welds which penetrate the full depth of the material, it is necessary to either specially design and prepare the geometry of the joint or cause to cause vaporization of the material to such a degree that a "keyhole" is formed, allowing the heat to penetrate the joint. This is not a significant disadvantage in many types of material, as good joint strengths can be achieved, however for certain material classes such as ceramics or metal ceramic composites, such processing can significantly limit joint strength. They have great potential for use in the aerospace industry, provided a joining process that maintains the strength of the material can be found.

Until recently, sources of x-rays of sufficient intensity to cause enough vometric heating for welding were not available. However, with the advent of third-generation synchrotron radiation
Synchrotron radiation
The electromagnetic radiation emitted when charged particles are accelerated radially is called synchrotron radiation. It is produced in synchrotrons using bending magnets, undulators and/or wigglers...

sources, it is possible to achieve the power required for localized melting and even vaporization in a number of materials.

X-ray beams have been shown to have potential as welding sources for classes of materials which cannot be welded conventionally.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK