Home      Discussion      Topics      Dictionary      Almanac
Signup       Login
Surface wave

Surface wave

Discussion
Ask a question about 'Surface wave'
Start a new discussion about 'Surface wave'
Answer questions from other users
Full Discussion Forum
 
Encyclopedia

In physics
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

, a surface wave is a mechanical wave
Mechanical wave
A mechanical or material wave is a wave that needs a medium to travel. The oscillating material does not move far from its initial equilibrium position, as only the energy is transferred by connected particles. Ocean waves and sound are examples of this phenomenon.A mechanical wave requires an...

 that propagates along the interface between differing media, usually two fluid
Fluid
In physics, a fluid is a substance that continually deforms under an applied shear stress. Fluids are a subset of the phases of matter and include liquids, gases, plasmas and, to some extent, plastic solids....

s with different densities. A surface wave can also be an electromagnetic wave guided by a refractive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

 gradient
Gradient
In vector calculus, the gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change....

. In radio
Radio
Radio is the transmission of signals through free space by modulation of electromagnetic waves with frequencies below those of visible light. Electromagnetic radiation travels by means of oscillating electromagnetic fields that pass through the air and the vacuum of space...

 transmission
Transmission (telecommunications)
Transmission, in telecommunications, is the process of sending, propagating and receiving an analogue or digital information signal over a physical point-to-point or point-to-multipoint transmission medium, either wired, optical fiber or wireless...

, a ground wave is a surface wave that propagates close to the surface of the Earth
Earth
Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets...

.

Mechanical waves


In seismology
Seismology
Seismology is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic,...

, several types of surface waves are encountered. Surface waves, in this mechanical sense, are commonly known as either Love waves
Love wave
In elastodynamics, Love waves are horizontally polarized shear waves guided by an elastic layer, which is "welded" to an elastic half space on one side while bordering a vacuum on the other side...

(L waves) or Rayleigh waves. A seismic wave
Seismic wave
Seismic waves are waves of energy that travel through the earth, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves...

 is a wave that travels through the Earth, often as the result of an earthquake or explosion. Love wave
Love wave
In elastodynamics, Love waves are horizontally polarized shear waves guided by an elastic layer, which is "welded" to an elastic half space on one side while bordering a vacuum on the other side...

s have transverse motion (movement is perpendicular to the direction of travel, like light waves), whereas Rayleigh wave
Rayleigh wave
Rayleigh waves are a type of surface acoustic wave that travels on solids. They are produced on the Earth by earthquakes, in which case they are also known as "ground roll", or by other sources of seismic energy such as ocean waves an explosion or even a sledgehammer impact...

s have both longitudinal (movement parallel to the direction of travel, like sound waves) and transverse motion. Seismic waves are studied by seismologists and measured by a seismograph or seismometer. Surface waves span a wide frequency range, and the period of waves that are most damaging is usually 10 seconds or longer. Surface waves can travel around the globe many times from the largest earthquakes.

The term "surface wave" can describe waves over an ocean, even when they are approximated by Airy function
Airy function
In the physical sciences, the Airy function Ai is a special function named after the British astronomer George Biddell Airy...

s and are more properly called creeping wave
Creeping wave
According to the principle of diffraction, when a wave front passes an obstruction, it spreads out into the shadowed space. A creeping wave, in electromagnetism or acoustics is the wave that is diffracted around the shadowed surface of a smooth body such as a sphere.Creeping waves greatly extend...

s. Examples are the wave
Wave
In physics, a wave is a disturbance that travels through space and time, accompanied by the transfer of energy.Waves travel and the wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium—that is, with little or no associated mass...

s at the surface of water
Water
Water is a chemical substance with the chemical formula H2O. A water molecule contains one oxygen and two hydrogen atoms connected by covalent bonds. Water is a liquid at ambient conditions, but it often co-exists on Earth with its solid state, ice, and gaseous state . Water also exists in a...

 and air (ocean surface wave
Ocean surface wave
In fluid dynamics, wind waves or, more precisely, wind-generated waves are surface waves that occur on the free surface of oceans, seas, lakes, rivers, and canals or even on small puddles and ponds. They usually result from the wind blowing over a vast enough stretch of fluid surface. Waves in the...

s), or ripples in the sand
Sand
Sand is a naturally occurring granular material composed of finely divided rock and mineral particles.The composition of sand is highly variable, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal...

 at the interface with water or air. Another example is internal wave
Internal wave
Internal waves are gravity waves that oscillate within, rather than on the surface of, a fluid medium. They are one of many types of wave motion in stratified fluids . A simple example is a wave propagating on the interface between two fluids of different densities, such as oil and water...

s, which can be transmitted along the interface of two water masses of different densities.

Electromagnetic waves


Ground waves refer to the propagation of radio waves
Radio propagation
Radio propagation is the behavior of radio waves when they are transmitted, or propagated from one point on the Earth to another, or into various parts of the atmosphere...

 close to or at the surface of the Earth. These surface waves are also known loosely as Norton surface waves, Zenneck waves, Sommerfeld waves, or gliding waves.

Radio propagation


Lower frequencies
Frequency
Frequency is the number of occurrences of a repeating event per unit time. It is also referred to as temporal frequency.The period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency...

, especially AM
Amplitude modulation
Amplitude modulation is a technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. AM works by varying the strength of the transmitted signal in relation to the information being sent...

 broadcast
Broadcasting
Broadcasting is the distribution of audio and video content to a dispersed audience via any audio visual medium. Receiving parties may include the general public or a relatively large subset of thereof...

s in the mediumwave
Mediumwave
Medium wave is the part of the medium frequency radio band used mainly for AM radio broadcasting. For Europe the MW band ranges from 526.5 kHz to 1606.5 kHz...

 (sometimes called "medium frequency") and long wave bands (and other types of radio frequencies below that), travel efficiently as a surface wave. This is because they are more efficiently diffracted by the figure of the Earth due to their low frequencies. Ionospheric reflection is taken into consideration as well. The ionosphere
Ionosphere
The ionosphere is a part of the upper atmosphere, comprising portions of the mesosphere, thermosphere and exosphere, distinguished because it is ionized by solar radiation. It plays an important part in atmospheric electricity and forms the inner edge of the magnetosphere...

 reflects frequencies in a certain band, which often changes due to solar conditions. The Earth has one refractive index and the atmosphere has another, thus constituting an interface
Interface (chemistry)
An interface is a surface forming a common boundary among two different phases, such as an insoluble solid and a liquid, two immiscible liquids or a liquid and an insoluble gas. The importance of the interface depends on which type of system is being treated: the bigger the quotient area/volume,...

 that supports the surface wave transmission.

Conductivity of the surface affects the propagation of ground waves, with more conductive surfaces such as water providing better propagation. Increasing the conductivity in a surface results in less dissipation. The refractive indices are subject to spatial and temporal changes. Since the ground is not a perfect electrical conductor, ground waves are attenuated as they follow the earth’s surface.

Most long-distance LF
Low frequency
Low frequency or low freq or LF refers to radio frequencies in the range of 30 kHz–300 kHz. In Europe, and parts of Northern Africa and of Asia, part of the LF spectrum is used for AM broadcasting as the longwave band. In the western hemisphere, its main use is for aircraft beacon,...

 "longwave
Longwave
In radio, longwave refers to parts of radio spectrum with relatively long wavelengths. The term is a historic one dating from the early 20th century, when the radio spectrum was considered to consist of long, medium and short wavelengths...

" radio communication (between 30 kHz and 300 kHz) is a result of groundwave propagation. Mediumwave
Mediumwave
Medium wave is the part of the medium frequency radio band used mainly for AM radio broadcasting. For Europe the MW band ranges from 526.5 kHz to 1606.5 kHz...

 radio transmissions (frequencies between 300 kHz and 3000 kHz) have the property of following the curvature of the earth (the groundwave) in the majority of occurrences. At low frequencies, ground losses are low and become lower at lower frequencies. The VLF and LF
Low frequency
Low frequency or low freq or LF refers to radio frequencies in the range of 30 kHz–300 kHz. In Europe, and parts of Northern Africa and of Asia, part of the LF spectrum is used for AM broadcasting as the longwave band. In the western hemisphere, its main use is for aircraft beacon,...

 frequencies are mostly used for military communications, especially with ships and submarines.

Surface waves have been used in over-the-horizon radar
Over-the-horizon radar
Over-the-horizon radar, or OTH , is a design concept for radar systems to allow them to detect targets at very long ranges, typically up to thousands of kilometers...

. In the development of radio
Invention Of Radio
Within the history of radio, several people were involved in the invention of radio and there were many key inventions in what became the modern systems of wireless. Radio development began as "wireless telegraphy"...

, surface waves were used extensively. Early commercial and professional radio services relied exclusively on long wave, low frequencies and ground-wave propagation. To prevent interference with these services, amateur and experimental transmitters were restricted to the higher (HF) frequencies, felt to be useless since their ground-wave range was limited. Upon discovery of the other propagation modes possible at medium wave and short wave frequencies, the advantages of HF for commercial and military purposes became apparent. Amateur experimentation was then confined only to authorized frequencies in the range.

Mediumwave and shortwave
Shortwave
Shortwave radio refers to the upper MF and all of the HF portion of the radio spectrum, between 1,800–30,000 kHz. Shortwave radio received its name because the wavelengths in this band are shorter than 200 m which marked the original upper limit of the medium frequency band first used...

 reflect off the ionosphere at night, which is known as skywave
Skywave
Skywave is the propagation of electromagnetic waves bent back to the Earth's surface by the ionosphere. As a result of skywave propagation, a broadcast signal from a distant AM broadcasting station at night, or from a shortwave radio station can sometimes be heard as clearly as local...

. During daylight hours, the lower "D" layer of the ionosphere forms and absorbs lower frequency energy. This prevents skywave propagation from being very effective on mediumwave frequencies in daylight hours. At night, when the "D" layer dissipates, mediumwave transmissions travel better by skywave. Ground waves do not include ionospheric
Ionosphere
The ionosphere is a part of the upper atmosphere, comprising portions of the mesosphere, thermosphere and exosphere, distinguished because it is ionized by solar radiation. It plays an important part in atmospheric electricity and forms the inner edge of the magnetosphere...

 and tropospheric
Troposphere
The troposphere is the lowest portion of Earth's atmosphere. It contains approximately 80% of the atmosphere's mass and 99% of its water vapor and aerosols....

 waves.

Microwave field theory


Within microwave field theory, the interface of a dielectric and conductor supports "surface wave transmission." Surface waves have been studied as part of transmission line
Transmission line
In communications and electronic engineering, a transmission line is a specialized cable designed to carry alternating current of radio frequency, that is, currents with a frequency high enough that its wave nature must be taken into account...

s and some may be considered as single-wire transmission line
Single-wire transmission line
A single-wire transmission line is a method of supplying electrical power through a single electrical conductor.-History:In 1729, the English physicist Stephen Gray noticed the phenomenon of electrical conductivity...

s.

Characteristics and utilizations of the electrical surface wave phenomena include:
  • The field
    Field (physics)
    In physics, a field is a physical quantity associated with each point of spacetime. A field can be classified as a scalar field, a vector field, a spinor field, or a tensor field according to whether the value of the field at each point is a scalar, a vector, a spinor or, more generally, a tensor,...

     components of the wave diminish with distance from the interface.
  • Electromagnetic energy is not converted from the surface wave field to another form of energy (except in leaky or lossy surface waves) such that the wave does not transmit power normal to the interface, i.e. it is evanescent along that dimension.
  • In optical fiber
    Optical fiber
    An optical fiber is a flexible, transparent fiber made of a pure glass not much wider than a human hair. It functions as a waveguide, or "light pipe", to transmit light between the two ends of the fiber. The field of applied science and engineering concerned with the design and application of...

     transmission
    Transmission (telecommunications)
    Transmission, in telecommunications, is the process of sending, propagating and receiving an analogue or digital information signal over a physical point-to-point or point-to-multipoint transmission medium, either wired, optical fiber or wireless...

    , evanescent waves are surface waves.
  • In coaxial cable
    Coaxial cable
    Coaxial cable, or coax, has an inner conductor surrounded by a flexible, tubular insulating layer, surrounded by a tubular conducting shield. The term coaxial comes from the inner conductor and the outer shield sharing the same geometric axis...

     in addition to the TEM mode there also exists a transverse-magnetic (TM) mode which propagates as a surface wave in the region around the central conductor. For coax of common impedance this mode is effectively suppressed but in high impedance coax and on a single central conductor without any outer shield, low attenuation and very broadband propagation is supported. Transmission line operation in this mode is called E-Line
    Single-wire transmission line
    A single-wire transmission line is a method of supplying electrical power through a single electrical conductor.-History:In 1729, the English physicist Stephen Gray noticed the phenomenon of electrical conductivity...

    .

Energy flow velocity


The energy of surface electromagnetic waves can break the light barrier c because the dispersion relation is corresponding to the energy-momentum equation of a tachyon. In addition, the consequential velocity of a tachyon just equals the energy flow velocity S/w of the field given by classical electrodynamics. It is a good model helpful to study the tachyon
Tachyon
A tachyon is a hypothetical subatomic particle that always moves faster than light. In the language of special relativity, a tachyon would be a particle with space-like four-momentum and imaginary proper time. A tachyon would be constrained to the space-like portion of the energy-momentum graph...

 and extend special relativity
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

.

See also


Waves
  • Seismic wave
    Seismic wave
    Seismic waves are waves of energy that travel through the earth, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves...

    s
  • P-wave
    P-wave
    P-waves are a type of elastic wave, also called seismic waves, that can travel through gases , solids and liquids, including the Earth. P-waves are produced by earthquakes and recorded by seismographs...

    s
  • S-wave
    S-wave
    A type of seismic wave, the S-wave, secondary wave, or shear wave is one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves....

    s
  • Surface Acoustic Wave
    Surface acoustic wave
    ]A surface acoustic wave is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the substrate.-Discovery:...

  • Sky waves, the primary means of HF transmission

  • Evanescent wave
    Evanescent wave
    An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

    s and evanescent wave coupling
  • Surface-wave-sustained mode
    Surface-wave-sustained mode
    Plasmas that are excited by propagation of electromagnetic surface waves are called surface-wave-sustained. Surface wave plasma sources can be divided into two groups depending upon whether the plasma generates part of its own waveguide by ionisation or not. The former is called a self-guided plasma...

    , a propagation of electromagnetic surface waves.
  • Ocean surface wave
    Ocean surface wave
    In fluid dynamics, wind waves or, more precisely, wind-generated waves are surface waves that occur on the free surface of oceans, seas, lakes, rivers, and canals or even on small puddles and ponds. They usually result from the wind blowing over a vast enough stretch of fluid surface. Waves in the...

    s, internal wave
    Internal wave
    Internal waves are gravity waves that oscillate within, rather than on the surface of, a fluid medium. They are one of many types of wave motion in stratified fluids . A simple example is a wave propagating on the interface between two fluids of different densities, such as oil and water...

    s and crests
    Crest (physics)
    A crest is the point on a wave with the maximum value or upward displacement within a cycle. A trough is the opposite of a crest, so the minimum or lowest point in a cycle.-Interference:...

    , dispersion
    Dispersion (water waves)
    In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, and forced by gravity and surface tension...

    , and freak wave
    Freak wave
    Rogue waves are relatively large and spontaneous ocean surface waves that occur far out in sea, and are a threat even to large ships and ocean liners...

    s
  • Love Wave
    Love wave
    In elastodynamics, Love waves are horizontally polarized shear waves guided by an elastic layer, which is "welded" to an elastic half space on one side while bordering a vacuum on the other side...

     and Rayleigh-Lamb Wave
    Rayleigh wave
    Rayleigh waves are a type of surface acoustic wave that travels on solids. They are produced on the Earth by earthquakes, in which case they are also known as "ground roll", or by other sources of seismic energy such as ocean waves an explosion or even a sledgehammer impact...

  • Gravity wave
    Gravity wave
    In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media which has the restoring force of gravity or buoyancy....

    s, occurs at certain natural interfaces (e.g. the atmosphere and ocean)
  • Tube wave
  • Stoneley wave
    Stoneley wave
    A surface wave associated with the interface between two solid media. The wave is of maximum intensity at the interface and decreases exponentially away from the interface into both solids. Named after Dr. Robert Stoneley , Emeritus Professor of Seismology, Cambridge....

  • Scholte wave
    Scholte wave
    A surface wave of the Stoneley wave type associated with the interface between a fluid and a solid medium. The wave is of maximum intensity at the interface and decreases exponentially away from the interface into both the fluid and the solid medium....


People
  • Arnold Sommerfeld
    Arnold Sommerfeld
    Arnold Johannes Wilhelm Sommerfeld was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and groomed a large number of students for the new era of theoretical physics...

     – published the mathematical treatise on the zenneck wave
  • Jonathan Zenneck
    Jonathan Zenneck
    Jonathan Adolf Wilhelm Zenneck was a physicist and electrical engineer. Zenneck was born in Ruppertshofen, Württemberg. Zenneck contributed to researches in radio circuit performance and to the scientific and educational contributions to the literature of the pioneer radio art...

     – Pupil of Sommerfeld; Wireless pioneer; developed the zenneck wave
  • Kenneth Norton
  • John Stone Stone
    John Stone Stone
    John Stone Stone was an American mathematician, physicist and inventor. He labored as an early telephone engineer, was influential in developing wireless communication technology, and holds dozens of key patents in the field of "space telegraphy".-Early years:Stone was born in Dover, now Manakin...

     – Wireless pioneer; produced theories on radio propagation

Other
  • Ground constants
    Ground constants
    In telecommunication, ground constants are the electrical parameters of earth, such as conductivity, permittivity, and magnetic permeability.The values of these parameters vary with the local chemical composition and density of the Earth...

    , the electrical parameters of earth
  • Near and far field
    Near and far field
    The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

    , the radiated field that is within one quarter of a wavelength of the diffracting edge or the antenna and beyond.
  • Skin effect
    Skin effect
    Skin effect is the tendency of an alternating electric current to distribute itself within a conductor with the current density being largest near the surface of the conductor, decreasing at greater depths. In other words, the electric current flows mainly at the "skin" of the conductor, at an...

    , the tendency of an alternating electric current to distribute itself within a conductor so that the current density near the surface of the conductor is greater than that at its core.
  • Green function
    Green function
    Green function might refer to:*Green's function of a differential operator.*Deligne–Lusztig theory in the representation theory of finite groups of Lie type.*Green's function in many-body theory....

    , a function used to solve inhomogeneous differential equations subject to boundary conditions.

Web sites

  • Eric W. Weisstein, et al., "Surface Wave", Eric Weisstein's World of Physics, 2006.
  • "Surface waves". Integrated Publishing (tpub.com).
  • David Reiss, "Electromagnetic surface waves". The Net Advance of Physics: Special Reports, No. 1
  • Gary L. Peterson, "Rediscovering the Zenneck wave". Feed Line No. 4. (ed. reproduction available online at 21st Century Books)
  • 3D Waves by Jesse Nochella based on a program by Stephen Wolfram
    Stephen Wolfram
    Stephen Wolfram is a British scientist and the chief designer of the Mathematica software application and the Wolfram Alpha computational knowledge engine.- Biography :...

    , Wolfram Demonstrations Project
    Wolfram Demonstrations Project
    The Wolfram Demonstrations Project is hosted by Wolfram Research, whose stated goal is to bring computational exploration to the widest possible audience. It consists of an organized, open-source collection of small interactive programs called Demonstrations, which are meant to visually and...

    .

Patents

, "Surface wave transmission line". George J. E. Goubau, "Launching and receiving of surface waves". George J. E. Goubau., "Surface wave transmission system over a single conductor having E-fields terminating along the conductor ". Glenn E. Elmore.

Standards and doctrines

  • "Surface wave". Telecom Glossary 2000, ATIS Committee T1A1, Performance and Signal Processing, T1.523-2001.
  • "Surface wave", Federal Standard 1037C
    Federal Standard 1037C
    Federal Standard 1037C, titled Telecommunications: Glossary of Telecommunication Terms is a United States Federal Standard, issued by the General Services Administration pursuant to the Federal Property and Administrative Services Act of 1949, as amended....

    .
  • "Surface wave", MIL-STD-188
    MIL-STD-188
    MIL-STD-188 is a series of U.S. military standards relating to telecommunications.-Purpose:Faced with “past technical deficiencies in telecommunications systems and equipment and software…that were traced to basic inadequacies in the application of telecommunication standards and to the lack of a...

  • "Multi-service tactics, techniques, and procedures for the High-Frequency Automatic Link Establishment (HF-ALE): FM 6-02.74; MCRP 3-40.3E; NTTP 6-02.6; AFTTP(I) 3-2.48; COMDTINST M2000.7" Sept., 2003.

Books

  • Collin, R. E., "Field Theory of Guided Waves". New York: Wiley-IEEE Press, 1990.
  • Waldron, Richard Arthur, "Theory of guided electromagnetic waves". London, New York, Van Nostrand Reinhold, 1970. ISBN 0-442-09167-2 LCCN 69019848 //r86
  • Weiner, Melvin M., "Monopole antennas" New York, Marcel Dekker, 2003. ISBN 0-8247-0496-7
  • Wait, J. R., "The Waves in Stratified Media". New York: Pergamon, 1962.
  • Wait, J. R., "Electromagnetic Wave Theory", New York, Harper and Row, 1985.
  • Budden, K. G., " The propagation of radio waves : the theory of radio waves of low power in the ionosphere and magnetosphere". Cambridge (Cambridgeshire); New York : Cambridge University Press, 1985. ISBN 0-521-25461-2 LCCN 84028498
  • Budden, K. G., "Radio waves in the ionosphere; the mathematical theory of the reflection of radio waves from stratified ionised layers". Cambridge, Eng., University Press, 1961. LCCN 61016040 /L/r85
  • Budden, K. G., "The wave-guide mode theory of wave propagation". London, Logos Press; Englewood Cliffs, N.J., Prentice-Hall, c1961. LCCN 62002870 /L
  • Barlow, H.M., and Brown, J., "Radio Surface Waves", Oxford University Press 1962.
  • Sommerfeld, A., "Partial Differential Equations in Physics" (English version), Academic Press Inc., New York 1949, chapter 6 - "Problems of Radio".
  • Rawer, K.,"Wave Propagation in the Ionosphere", Dordrecht, Kluwer Acad.Publ. 1993.

Journals and papers


Zenneck, Sommerfeld, and Norton
  • J. Zenneck, (translators: P. Blanchin, G. Guérard, É. Picot), "Précis de télégraphie sans fil : complément de l'ouvrage : Les oscillations électromagnétiques et la télégraphie sans fil", Paris : Gauthier-Villars, 1911. viii, 385 p. : ill. ; 26 cm. (Tr. Precisions of wireless telegraphy: complement of the work: Electromagnetic oscillations and wireless telegraphy)
  • J. Zenneck, "Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie", Ann. der Physik, vol. 23, pp. 846–866, Sept. 1907. (Tr. "About the propagation of electromagnetic plane waves along a conductor plane and their relationship to wireless telegraphy" )
  • J. Zenneck, "Elektromagnetische Schwingungen und drahtlose Telegraphie", gart, F. Enke, 1905. xxvii, 1019 p. : ill. ; 24 cm. (Tr. "Electromagnetic oscillations and wireless telegraphy.")
  • J. Zenneck, (translator: A.E. Seelig) "Wireless telegraphy,", New York [etc.] McGraw-Hill Book Company, inc., 1st ed. 1915. xx, 443 p. illus., diagrs. 24 cm. LCCN 15024534 (ed. "Bibliography and notes on theory" p. 408-428.)
  • A. Sommerfeld, "Fortpflanzung elektrodynamischer Wellen an einem zylindrischen Leiter", Ann. der Physik und Chemie, vol. 67, pp. 233–290, Dec 1899. (Tr. Propagation of electro-dynamic waves along a cylindric conductor)
  • A. Sommerfeld, "Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie", Annalen der Physik, Vol. 28, March, 1909, pp. 665-736. (Tr. About the Propagation of waves in wireless telegraphy)
  • A. Sommerfeld, "Propagation of waves in wireless telegraphy", Ann. Phys., vol. 81, pp. 1367–1153, 1926.
  • K. A. Norton, "The propagation of radio waves over the surface of the earth and in the upper atmosphere", Proc. IRE, vol. 24, pp. 1367–1387, 1936.
  • K. A. Norton, "The calculations of ground wave field intensity over a finitely conducting spherical earth", Proc. IRE, vol. 29, pp. 623–639, 1941.


Wait
  • Wait, J. R., "Lateral Waves and the Pioneering Research of the Late Kenneth A Norton".
  • Wait, J. R., and D. A. Hill, "Excitation of the HF surface wave by vertical and horizontal apertures". Radio Science, 14, 1979, pp 767-780.
  • Wait, J. R., and D. A. Hill, "Excitation of the Zenneck surface by a vertical aperture", Radio Science, 13, 1978, pp. 967-977.
  • Wait, J. R., "A note on surface waves and ground waves", IEEE Transactions on Antennas and Propagation, Nov 1965. Vol. 13, Issue 6, pg 996- 997 ISSN 0096-1973
  • Wait, J. R., "The ancient and modern history of EM ground-wave propagation". IEEE Antennas Propagat. Mag., vol. 40, pp. 7–24, Oct. 1998.
  • Wait, J. R., "Appendix C: On the theory of ground wave propagation over a slightly roughned curved earth", Electromagnetic Probing in Geophysics. Boulder, CO., Golem, 1971, pp. 37–381.
  • Wait, J. R., "Electromagnetic surface waves", Advances in Radio Research, 1, New York, Academic Press, 1964, pp. 157-219.


Others
  • R. E. Collin, "Hertzian Dipole Radiating Over a Lossy Earth or Sea: Some Early and Late 20th-Century Controversies", Antennas and Propagation Magazine, 46, 2004, pp. 64-79.
  • F. J. Zucker, "Surface wave antennas and surface wave excited arrays", Antenna Engineering Handbook, 2nd ed., R. C. Johnson and H. Jasik, Eds. New York: McGraw-Hill, 1984.
  • Hill, D. and J.R Wait, "Excitation of the Zenneck Surface Wave by a Vertical Aperture", Radio Science, Vol. 13, No. 6, November–December, 1978, pp. 969-977.
  • Yu. V. Kistovich, "Possibility of Observing Zenneck Surface Waves in Radiation from a Source with a Small Vertical Aperture", Soviet Physics Technical Physics, Vol. 34, No.4, April, 1989, pp. 391-394.
  • V. I. Baĭbakov, V. N. Datsko, Yu. V. Kistovich, "Experimental discovery of Zenneck's surface electromagnetic waves", Sov Phys Uspekhi, 1989, 32 (4), 378-379.
  • Corum, K. L. and J. F. Corum, "The Zenneck Surface Wave", Nikola Tesla, Lightning Observations, and Stationary Waves, Appendix II. 1994.
  • M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths". J. Appl. Phys., vol. 21, pp. 1119–1128; November,
  • Georg Goubau, "Surface waves and their application to transmission lines", J. Appl. Phys., vol. 21, pp. 1119–1128; November,1950.
  • M. J. King and J. C. Wiltse, "Surface-Wave Propagation on a Dielectric Rod of Electric Cross-Section." Electronic Communications, Inc., Tirnonium: kld. Sci. Rept.'No. 1, AFCKL Contract No. AF 19(601)-5475; August, 1960.
  • T. Kahan and G. Eckart, "On the Electromagnetic Surface Wave of Sommerfeld", Phys. Rev. 76, 406–410 (1949).

Other media

  • L.A. Ostrovsky (ed.), "Laboratory modeling and theoretical studies of surface wave modulation by a moving sphere", m, Oceanic and Atmospheric Research Laboratories, 2002. OCLC 50325097