Solution concept
Encyclopedia
In game theory
Game theory
Game theory is a mathematical method for analyzing calculated circumstances, such as in games, where a person’s success is based upon the choices of others...

, a solution concept is a formal rule for predicting how the game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players, therefore predicting the result of the game. The most commonly used solution concepts are equilibrium concepts
Economic equilibrium
In economics, economic equilibrium is a state of the world where economic forces are balanced and in the absence of external influences the values of economic variables will not change. It is the point at which quantity demanded and quantity supplied are equal...

, most famously Nash equilibrium
Nash equilibrium
In game theory, Nash equilibrium is a solution concept of a game involving two or more players, in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only his own strategy unilaterally...

.

Many solution concepts, for many games, will result in more than one solution. This puts any one of the solutions in doubt, so a game theorist may apply a refinement to narrow down the solutions. Each successive solution concept presented in the following improves on its predecessor by eliminating implausible equilibria in richer games.

Formal definition

Let be the class of all games and, for each game , let be the set of strategy profiles of . A solution concept is an element of the direct product i.e., a function such that for all

Rationalizability and iterated dominance

In this solution concept, players are assumed to be rational and so strictly dominated strategies are eliminated from the set of strategies that might feasibly be played. A strategy is strictly dominated when there is some other strategy available to the player that always has a higher payoff, regardless of the strategies that the other players choose. (Strictly dominated strategies are also important in minimax
Minimax
Minimax is a decision rule used in decision theory, game theory, statistics and philosophy for minimizing the possible loss for a worst case scenario. Alternatively, it can be thought of as maximizing the minimum gain...

 game-tree search.) For example, in the (single period) prisoners' dilemma
Prisoner's dilemma
The prisoner’s dilemma is a canonical example of a game, analyzed in game theory that shows why two individuals might not cooperate, even if it appears that it is in their best interest to do so. It was originally framed by Merrill Flood and Melvin Dresher working at RAND in 1950. Albert W...

 (shown below), cooperate is strictly dominated by defect for both players because either player is always better off playing defect, regardless of what his opponent does.
Prisoner 2 Cooperate Prisoner 2 Defect
Prisoner 1 Cooperate −0.5, −0.5 −10, 0
Prisoner 1 Defect 0, −10 −2, −2

Nash equilibrium

A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and player 2 plays defect) in which every strategy is a best response to every other strategy played. A strategy by a player is a best response
Best response
In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given...

 to another player's strategy if there is no other strategy that could be played that would yield a higher pay-off in any situation in which the other player's strategy is played.

Backward induction

There are games that have multiple Nash equilibria, some of which are unrealistic. In the case of dynamic games, unrealistic Nash equilibria might be eliminated by applying backward induction, which assumes that future play will be rational. It therefore eliminates noncredible (or incredible) threats because such threats would be irrational to carry out if a player was ever called upon to do so.

For example, consider a dynamic game in which the players are an incumbent firm in an industry and a potential entrant to that industry. As it stands, the incumbent has a monopoly over the industry and does not want to lose some of its market share to the entrant. If the entrant chooses not to enter, the payoff to the incumbent is high (it maintains its monopoly) and the entrant neither loses nor gains (its payoff is zero). If the entrant enters, the incumbent can fight or accommodate the entrant. It will fight by lowering its price, running the entrant out of business (and incurring exit costs – a negative payoff) and damaging its own profits. If it accommodates the entrant it will lose some of its sales, but a high price will be maintained and it will receive greater profits than by lowering its price (but lower than monopoly profits).

If the entrant enters, the best response of the incumbent is to accommodate. If the incumbent accommodates, the best response of the entrant is to enter (and gain profit). Hence the strategy profile in which the incumbent accommodates if the entrant enters and the entrant enters if the incumbent accommodates is a Nash equilibrium. However, if the incumbent is going to play fight, the best response of the entrant is to not enter. If the entrant does not enter, it does not matter what the incumbent chooses to do (since there is no other firm to do it to - note that if the entrant does not enter, fight and accommodate yield the same payoffs to both players; the incumbent will not lower its prices if the entrant does not enter). Hence fight can be considered as a best response of the incumbent if the entrant does not enter. Hence the strategy profile in which the incumbent fights if the entrant does not enter and the entrant does not enter if the incumbent fights is a Nash equilibrium. Since the game is dynamic, any claim by the incumbent that it will fight is an incredible threat because by the time the decision node is reached where it can decide to fight (i.e. the entrant has entered), it would be irrational to do so. Therefore this Nash equilibrium can be eliminated by backward induction.

See also:
  • Monetary policy theory
  • Stackelberg competition
    Stackelberg competition
    The Stackelberg leadership model is a strategic game in economics in which the leader firm moves first and then the follower firms move sequentially...


Subgame perfect Nash equilibrium

A generalization of backward induction is subgame perfection. Backward induction assumes that all future play will be rational. In subgame perfect equilibria, play in every subgame
Subgame
In game theory, a subgame is any part of a game that meets the following criteria :#It has a single initial node that is the only member of that node's information set In game theory, a subgame is any part (a subset) of a game that meets the following criteria (the following terms allude to a game...

 is rational (specifically a Nash equilibrium). Backward induction can only be used in terminating (finite) games of definite length and cannot be applied to games with imperfect information. In these cases, subgame perfection can be used. The eliminated Nash equilibrium described above is subgame imperfect because it is not a Nash equilibrium of the subgame that starts at the node reached once the entrant has entered.

Perfect Bayesian equilibrium

Sometimes subgame perfection does not impose a large enough restriction on unreasonable outcomes. For example, since subgames cannot cut through information sets, a game of imperfect information may have only one subgame – itself – and hence subgame perfection cannot be used to eliminate any Nash equilibria. A perfect Bayesian equilibrium (PBE) is a specification of players’ strategies and beliefs about which node in the information set has been reached by the play of the game. A belief about a decision node is the probability that a particular player thinks that that node is or will be in play (on the equilibrium path). In particular, the intuition of PBE is that it specifies player strategies that are rational given the player beliefs it specifies and the beliefs it specifies are consistent with the strategies it specifies.

In a Bayesian game a strategy determines what a player plays at every information set controlled by that player. The requirement that beliefs are consistent with strategies is something not specified by subgame perfection. Hence, PBE is a consistency condition on players’ beliefs. Just as in a Nash equilibrium no player’s strategy is strictly dominated, in a PBE, for any information set no player’s strategy is strictly dominated beginning at that information set. That is, for every belief that the player could hold at that information set there is no strategy that yields a greater expected payoff for that player. Unlike the above solution concepts, no player’s strategy is strictly dominated beginning at any information set even if it is off the equilibrium path. Thus in PBE, players cannot threaten to play strategies that are strictly dominated beginning at any information set off the equilibrium path.

The Bayesian in the name of this solution concept alludes to the fact that players update their beliefs according to Bayes' theorem
Bayes' theorem
In probability theory and applications, Bayes' theorem relates the conditional probabilities P and P. It is commonly used in science and engineering. The theorem is named for Thomas Bayes ....

. They calculate probabilities given what has already taken place in the game.

Forward induction

Forward induction is so called because just as backward induction assumes future play will be rational, forward induction assumes past play was rational. Where a player does not know what type another player is (i.e. there is imperfect and asymmetric information), that player may form a belief of what type that player is by observing that player's past actions. Hence the belief formed by that player of what the probability of the opponent being a certain type is based on the past play of that opponent being rational.

See also

  • Extensive form game
    Extensive form game
    An extensive-form game is a specification of a game in game theory, allowing explicit representation of a number of important aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when he...

  • Trembling hand equilibrium
  • "The Intuitive Criterion
    The Intuitive Criterion
    The Intuitive Criterion in Game Theory is a technique for equilibrium refinement in signaling games. In economics, signaling games are games in which a player with private information moves first. Private information generally refers to the player's hidden or unobservable type. Signaling games...

    " (Cho and Kreps 1987)
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK