Nonlinear optics

Nonlinear optics

Overview
Nonlinear optics (NLO) is the branch of optics
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...

 that describes the behavior of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field
Electric field
In physics, an electric field surrounds electrically charged particles and time-varying magnetic fields. The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding...

 E of the light. This nonlinearity is typically only observed at very high light intensities (values of the electric field comparable to interatomic electric fields, typically 108 V/m) such as those provided by pulsed laser
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation...

s.
Discussion
Ask a question about 'Nonlinear optics'
Start a new discussion about 'Nonlinear optics'
Answer questions from other users
Full Discussion Forum
 
Unanswered Questions
Encyclopedia
Nonlinear optics (NLO) is the branch of optics
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...

 that describes the behavior of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field
Electric field
In physics, an electric field surrounds electrically charged particles and time-varying magnetic fields. The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding...

 E of the light. This nonlinearity is typically only observed at very high light intensities (values of the electric field comparable to interatomic electric fields, typically 108 V/m) such as those provided by pulsed laser
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation...

s. In nonlinear optics, the superposition principle
Superposition principle
In physics and systems theory, the superposition principle , also known as superposition property, states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually...

 no longer holds. Nonlinear optics remained unexplored until the discovery of Second harmonic generation
Second harmonic generation
An optical frequency multiplier is a nonlinear optical device, in which photons interacting with a nonlinear material are effectively "combined" to form new photons with greater energy, and thus higher frequency...

 shortly after demonstration of the first laser. (Peter Franken
Peter Franken
Peter A. Franken was an American physicist who contributed to the field of nonlinear optics. He was president of the Optical Society of America in 1977....

 et al at University of Michigan
University of Michigan
The University of Michigan is a public research university located in Ann Arbor, Michigan in the United States. It is the state's oldest university and the flagship campus of the University of Michigan...

 in 1961)

Frequency mixing processes

NEWLINE
    NEWLINE
  • Second harmonic generation
    Second harmonic generation
    An optical frequency multiplier is a nonlinear optical device, in which photons interacting with a nonlinear material are effectively "combined" to form new photons with greater energy, and thus higher frequency...

     (SHG), or frequency doubling, generation of light with a doubled frequency (half the wavelength), two photons are destroyed creating a single photon at two times the frequency.
  • NEWLINE
  • Third harmonic generation (THG), generation of light with a tripled frequency (one-third the wavelength), three photons are destroyed creating a single photon at three times the frequency.
  • NEWLINE
  • High harmonic generation
    High Harmonic Generation
    - Perturbative Harmonic Generation :Perturbative Harmonic Generation is a process whereby laser light of frequency ω and photon energy ħω can be used to generate new frequencies of light. The newly generated frequencies are integer multiples nħω of the original light's frequency...

     (HHG), generation of light with frequencies much greater than the original (typically 100 to 1000 times greater)
  • NEWLINE
  • Sum frequency generation
    Sum frequency generation
    Sum-frequency generation is a non-linear optical process. This phenomenon is based on the annihilation of two input photons at angular frequencies \omega_1 and \omega_2 while, simultaneously, one photon at frequency \omega_3 is generated...

     (SFG), generation of light with a frequency that is the sum of two other frequencies (SHG is a special case of this)
  • NEWLINE
  • Difference frequency generation (DFG), generation of light with a frequency that is the difference between two other frequencies
  • NEWLINE
  • Optical parametric amplification (OPA), amplification of a signal input in the presence of a higher-frequency pump wave, at the same time generating an idler wave (can be considered as DFG)
  • NEWLINE
  • Optical parametric oscillation (OPO), generation of a signal and idler wave using a parametric amplifier in a resonator (with no signal input)
  • NEWLINE
  • Optical parametric generation (OPG), like parametric oscillation but without a resonator, using a very high gain instead
  • NEWLINE
  • Spontaneous parametric down conversion
    Spontaneous parametric down conversion
    Spontaneous parametric down-conversion is an important process in quantum optics, used especially as a source of entangled photon pairs, and of single photons.-Basic process:...

     (SPDC), the amplification of the vacuum fluctuations in the low gain regime
  • NEWLINE
  • Optical rectification
    Optical rectification
    Electro-optic rectification is a non-linear optical process which consists in the generation of a quasi-DC polarization in a non-linear medium at the passage of an intense optical beam...

     (OR), generation of quasi-static electric fields.
  • NEWLINE
  • Nonlinear light-matter interaction with free electrons and plasmas
NEWLINE

Other nonlinear processes

NEWLINE
    NEWLINE
  • Optical Kerr effect
    Kerr effect
    The Kerr effect, also called the quadratic electro-optic effect , is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric...

    , intensity dependent refractive index (a \chi^{(3)} effect)NEWLINE
      NEWLINE
    • Self-focusing
      Self-focusing
      Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterised by an...

      , an effect due to the Optical Kerr effect
      Kerr effect
      The Kerr effect, also called the quadratic electro-optic effect , is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric...

       (and possibly higher order nonlinearities) caused by the spatial variation in the intensity creating a spatial variation in the refractive index
    • NEWLINE
    • Kerr-lens modelocking
      Kerr-lens modelocking
      Kerr-lens modelocking is a method of modelocking lasers via a nonlinear optical process known as the optical Kerr effect. This method allows the generation of pulses of light with a duration as short as a few femtoseconds....

       (KLM), the use of Self-focusing
      Self-focusing
      Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterised by an...

       as a mechanism to mode lock laser.
    • NEWLINE
    • Self-phase modulation
      Self-phase modulation
      Self-phase modulation is a nonlinear optical effect of light-matter interaction.An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect...

       (SPM), an effect due to the Optical Kerr effect
      Kerr effect
      The Kerr effect, also called the quadratic electro-optic effect , is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric...

       (and possibly higher order nonlinearities) caused by the temporal variation in the intensity creating a temporal variation in the refractive index
    • NEWLINE
    • Optical solitons
      Soliton (optics)
      In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and linear effects in the medium. There are two main kinds of solitons:...

      , An equilibrium solution for either an optical pulse (temporal soliton) or Spatial mode (spatial soliton) that does not change during propagation due to a balance between diffraction
      Diffraction
      Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

       and the Kerr effect
      Kerr effect
      The Kerr effect, also called the quadratic electro-optic effect , is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric...

       (e.g. Self-phase modulation
      Self-phase modulation
      Self-phase modulation is a nonlinear optical effect of light-matter interaction.An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect...

       for temporal and Self-focusing
      Self-focusing
      Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterised by an...

       for spatial solitons).
    NEWLINE
  • NEWLINE
  • Cross-phase modulation
    Cross-phase modulation
    Cross-phase modulation is a nonlinear optical effect where one wavelength of light can affect the phase of another wavelength of light through the optical Kerr effect.- Applications of XPM :...

     (XPM)
  • NEWLINE
  • Four-wave mixing
    Four-wave mixing
    Four-wave mixing is an intermodulation phenomenon in optical systems, whereby interactions between 3 wavelengths produce a 4th wavelength in the signal. It is similar to the third-order intercept point in electrical systems...

     (FWM), can also arise from other nonlinearities
  • NEWLINE
  • Cross-polarized wave generation
    Cross-polarized wave generation
    Cross polarized wave generation is a nonlinear optical process that can be classified in the group of frequency degenerate [four wave mixing] processes. It can take place only in media with anisotropy of third order nonlinearity...

     (XPW), a \chi^{(3)} effect in which a wave with polarization vector perpendicular to the input one is generated
  • NEWLINE
  • Modulational instability
    Modulational instability
    In the field of nonlinear optics, modulational instability is a phenomenon whereby deviations from an optical waveform are reinforced by nonlinearity, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses.-Initial instability and...

  • NEWLINE
  • Raman amplification
    Raman amplification
    Raman amplification is based on the Stimulated Raman Scattering phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the...

  • NEWLINE
  • Optical phase conjugation
  • NEWLINE
  • Stimulated Brillouin scattering, interaction of photons with acoustic phonons
  • NEWLINE
  • Multi-photon absorption
    Two-photon absorption
    Two-photon absorption is the simultaneous absorption of two photons of identical or different frequencies in order to excite a molecule from one state to a higher energy electronic state. The energy difference between the involved lower and upper states of the molecule is equal to the sum of the...

    , simultaneous absorption of two or more photons, transferring the energy
    Energy
    In physics, energy is an indirectly observed quantity. It is often understood as the ability a physical system has to do work on other physical systems...

     to a single electron
  • NEWLINE
  • Multiple photoionisation, near-simultaneous removal of many bound electrons by one photon
  • NEWLINE
  • Chaos in Optical Systems
    Chaos in Optical Systems
    Optical Chaos is observed in many non-linear optical systems. One of the most common examples is a ring resonator.One of the most seminal works is published by Ikeda where chaotic behavior in a ring resonator was proposed and experiementally confirmed.Optical Chaos was an exciting field of...

NEWLINE

Related processes

In these processes, the medium has a linear response to the light, but the properties of the medium are affected by other causes:NEWLINE
    NEWLINE
  • Pockels effect
    Pockels effect
    The Pockels effect , or Pockels electro-optic effect, produces birefringence in an optical medium induced by a constant or varying electric field. It is distinguished from the Kerr effect by the fact that the birefringence is proportional to the electric field, whereas in the Kerr effect it is...

    , the refractive index is affected by a static electric field; used in electro-optic modulator
    Electro-optic modulator
    Electro-optic modulator is an optical device in which a signal-controlled element displaying electro-optic effect is used to modulate a beam of light. The modulation may be imposed on the phase, frequency, amplitude, or polarization of the modulated beam...

    s;
  • NEWLINE
  • Acousto-optics
    Acousto-optics
    Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound or sound in general.-Introduction:...

    , the refractive index is affected by acoustic waves (ultrasound); used in acousto-optic modulator
    Acousto-optic modulator
    An acousto-optic modulator , also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves . They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric...

    s.
  • NEWLINE
  • Raman scattering
    Raman scattering
    Raman scattering or the Raman effect is the inelastic scattering of a photon. It was discovered by Sir Chandrasekhara Venkata Raman and Kariamanickam Srinivasa Krishnan in liquids, and by Grigory Landsberg and Leonid Mandelstam in crystals....

    , interaction of photons with optical phonon
    Phonon
    In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, such as solids and some liquids...

    s;
NEWLINE

Parametric
Parametric process (optics)
A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no transfer of energy, momentum, or angular momentum between the optical field and the physical system...

 processes

Nonlinear effects fall into two qualitatively different categories, parametric
Parametric process (optics)
A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no transfer of energy, momentum, or angular momentum between the optical field and the physical system...

 and non-parametric effects. A parametric non-linearity is an interaction in which the quantum state of the nonlinear material is not changed by the interaction with the optical field. As a consequence of this, the process is 'instantaneous'; Energy and momentum conserving in the optical field, making phase matching important; and polarization dependent.

Theory

Parametric and lossy 'instantaneous' (i.e. electronic) nonlinear optical phenomena, in which the optical fields are not too large
Perturbation theory
Perturbation theory comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly, by starting from the exact solution of a related problem...

, can be described by a Taylor series
Taylor series
In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point....

 expansion of the dielectric Polarization density
Polarization density
In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is...

 (dipole moment per unit volume) P(t) at time t in terms of the electrical field:P(t) \propto \chi^{(1)} E(t) + \chi^{(2)} E^2(t) + \chi^{(3)} E^3(t) + \cdots. Here, the coefficients χ(n) are the n-th order susceptibilities
Electric susceptibility
In electromagnetism, the electric susceptibility \chi_e is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field...

 of the medium and the presence of such a term is generally referred to as an n-th order nonlinearity. In general χn is an n+1 order tensor
Tensor
Tensors are geometric objects that describe linear relations between vectors, scalars, and other tensors. Elementary examples include the dot product, the cross product, and linear maps. Vectors and scalars themselves are also tensors. A tensor can be represented as a multi-dimensional array of...

 representing both the polarization dependent nature of the parametric interaction as well as the symmetries (or lack thereof) of the nonlinear material.

Wave-equation in a nonlinear material

Central to the study of electromagnetic waves is the wave equation
Electromagnetic wave equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum...

. Starting with Maxwell's equations
Maxwell's equations
Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These fields in turn underlie modern electrical and communications technologies.Maxwell's equations...

 in an isotropic space containing no free charge, it can be shown that: \nabla \times \nabla \times \mathbf{E} + \frac{n^2}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{E} -\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{P}^{NL}, where PNL is the nonlinear part of the Polarization density
Polarization density
In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is...

 and n is the refractive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

 which comes from the linear term in P. Note one can normally use the vector identity\nabla \times \left( \nabla \times \mathbf{V} \right) = \nabla \left( \nabla \cdot \mathbf{V} \right) - \nabla^2 \mathbf{V} and Gauss's law
Gauss's law
In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. Gauss's law states that:...

,\nabla\cdot\mathbf{D} = 0, to obtain the more familiar wave equation
Electromagnetic wave equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum...

\nabla^2 \mathbf{E} - \frac{n^2}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{E} 0. For nonlinear medium Gauss's law
Gauss's law
In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. Gauss's law states that:...

 does not imply that the identity\nabla\cdot\mathbf{E} = 0 is true in general, even for an isotropic medium. However even when this term is not identically 0, it is often negligibly small and thus in practice is usually ignored giving us the standard nonlinear wave-equation: \nabla^2 \mathbf{E} - \frac{n^2}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{E}

Nonlinearities as a wave mixing process

The nonlinear wave-equation is an inhomogeneous differential equation. The general solution comes from the study of Ordinary differential equations and can be solved by the use of a Green's function
Green's function
In mathematics, a Green's function is a type of function used to solve inhomogeneous differential equations subject to specific initial conditions or boundary conditions...

. Physically one gets the normal electromagnetic wave solutions to the homogeneous part of the wave equation:\nabla^2 \mathbf{E} - \frac{n^2}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{E}= 0. and the inhomogenous term\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{P}^{NL}, acts as a driver/source of the electromagnetic waves. One of the consequences of this is a nonlinear interaction will result in energy being mixed or coupled between different colors which is often called a 'wave mixing'. In general an n-th order will lead to n+1-th wave mixing. As an example, if we consider only a second order nonlinearity (three-wave mixing), then the polarization, P, takes the formP^{NL}= \chi^{(2)} E^2(t). If we assume that E(t) is made up of two colors at frequencies ω1 and ω2, we can write E(t) asE(t) = E_1e^{-i\omega_1t}+E_2e^{-i\omega_2t} + c.c. where c.c. stands for complex conjugate
Complex conjugate
In mathematics, complex conjugates are a pair of complex numbers, both having the same real part, but with imaginary parts of equal magnitude and opposite signs...

. Plugging this into the expression for P gives\begin{align} P^{NL}= \chi^{(2)} E^2(t) &= \chi^{(2)} [ |E_1|^2e^{-i2\omega_1t}+|E_2|^2e^{-i2\omega_2t}\\ &\qquad+2E_1E_2e^{-i(\omega_1+\omega_2)t}\\ &\qquad+2E_1E_2^*e^{-i(\omega_1-\omega_2)t}\\ &\qquad+2\left(|E_1|+|E_2|\right)e^{0}], \end{align} which has frequency components at 1,2, ω12, ω12, and 0. These three-wave mixing processes correspond to the nonlinear effects known as Second harmonic generation
Second harmonic generation
An optical frequency multiplier is a nonlinear optical device, in which photons interacting with a nonlinear material are effectively "combined" to form new photons with greater energy, and thus higher frequency...

, Sum frequency generation
Sum frequency generation
Sum-frequency generation is a non-linear optical process. This phenomenon is based on the annihilation of two input photons at angular frequencies \omega_1 and \omega_2 while, simultaneously, one photon at frequency \omega_3 is generated...

, Difference frequency generation and Optical rectification
Optical rectification
Electro-optic rectification is a non-linear optical process which consists in the generation of a quasi-DC polarization in a non-linear medium at the passage of an intense optical beam...

 respectively. Note: Parametric generation and amplification is a variation of difference frequency generation, where the lower-frequency of one of the two generating fields is much weaker (parametric amplification) or completely absent (parametric generation). In the latter case, the fundamental quantum-mechanical
Quantum mechanics
Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic...

 uncertainty in the electric field initiates the process.

Phase matching

The above ignores the position dependence of the electrical fields. In a typical situation, the electrical fields are traveling waves described by E_j(\mathbf{x},t) = e^{i(\omega_j t - \mathbf{k}_j \cdot \mathbf{x})}, at position \mathbf{x}, with the wave vector \mathbf{k}_j = n(\omega_j)\omega_j/c, where c is the velocity of light and n(\omega_j) the index of refraction of the medium at angular frequency \omega_j. Thus, the second-order polarization angular frequency \omega_3 is P^{(2)} (\mathbf{x}, t) \propto E_1^{n_1} E_2^{n_2} e^{i (\omega_3 t - (m_1 \mathbf{k}_1 + m_2 \mathbf{k}_2)\cdot\mathbf{x})}. At each position \mathbf{x}, the oscillating second-order polarization radiates at angular frequency \omega_3 and a corresponding wave vector \mathbf{k}_3 = n(\omega_3)\omega_3/c. Constructive interference, and therefore a high intensity \omega_3 field, will occur only if \mathbf{k}_3 = m_1 \mathbf{k}_1 + m_2 \mathbf{k}_2. The above equation is known as the phase matching condition. Typically, three-wave mixing is done in a birefringent crystalline material (I.e., the refractive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

 depends on the polarization and direction of the light that passes through.), where the polarizations of the fields and the orientation of the crystal are chosen such that the phase-matching condition is fulfilled. This phase matching technique is called angle tuning. Typically a crystal has three axes, one or two of which have a different refractive index than the other one(s). Uniaxial crystals, for example, have a single preferred axis, called the extraordinary (e) axis, while the other two are ordinary axes (o) (see crystal optics
Crystal optics
Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be...

). There are several schemes of choosing the polarizations for this crystal type. If the signal and idler have the same polarization, it is called "Type-I phase-matching", and if their polarizations are perpendicular, it is called "Type-II phase-matching". However, other conventions exist that specify further which frequency has what polarization relative to the crystal axis. These types are listed below, with the convention that the signal wavelength is shorter than the idler wavelength.NEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINENEWLINE
Phase-matching types(\lambda_p \leq \lambda_s \leq \lambda_i)
Polarizations Scheme
Pump Signal Idler
e o o Type I
e o e Type II (or IIA)
e e o Type III (or IIB)
e e e Type IV
o o o Type V
o o e Type VI (or IIB or IIIA)
o e o Type VII (or IIA or IIIB)
o e e Type VIII (or I)
NEWLINENEWLINE Most common nonlinear crystals are negative uniaxial, which means that the e axis has a smaller refractive index than the o axes. In those crystals, type I and II phasematching are usually the most suitable schemes. In positive uniaxial crystals, types VII and VIII are more suitable. Types II and III are essentially equivalent, except that the names of signal and idler are swapped when the signal has a longer wavelength than the idler. For this reason, they are sometimes called IIA and IIB. The type numbers V–VIII are less common than I and II and variants. One undesirable effect of angle tuning is that the optical frequencies involved do not propagate collinearly with each other. This is due to the fact that the extraordinary wave propagating through a birefringent crystal possesses a Poynting vector that is not parallel with the propagation vector. This would lead to beam walkoff which limits the nonlinear optical conversion efficiency. Two other methods of phase matching avoids beam walkoff by forcing all frequencies to propagate at a 90 degree angle with respect to the optical axis of the crystal. These methods are called temperature tuning and quasi-phase-matching
Quasi-phase-matching
Quasi-phase-matching is a technique in nonlinear optics which allows a positive net flow of energy from the pump frequency to the signal and idler frequencies by creating a periodic structure in the nonlinear medium. Momentum is conserved, as is necessary for phase-matching, through an additional...

. Temperature tuning is where the pump (laser) frequency polarization is orthogonal to the signal and idler frequency polarization. The birefringence in some crystals, in particular Lithium Niobate is highly temperature dependent. The crystal is controlled at a certain temperature to achieve phase matching conditions. The other method is quasi-phase matching. In this method the frequencies involved are not constantly locked in phase with each other, instead the crystal axis is flipped at a regular interval Λ, typically 15 micrometres in length. Hence, these crystals are called periodically poled
Periodic poling
Periodic poling is a formation of layers with alternate orientation in a birefringent material. The domains are regularly spaced, with period in a multiple of the desired wavelength of operation. The structure is desired to achieve quasi-phase-matching in the material.Periodically poled crystals...

. This results in the polarization response of the crystal to be shifted back in phase with the pump beam by reversing the nonlinear susceptibility. This allows net positive energy flow from the pump into the signal and idler frequencies. In this case, the crystal itself provides the additional wavevector k=2π/λ (and hence momentum) to satisfy the phase matching condition. Quasi-phase matching can be expanded to chirped gratings to get more bandwidth and to shape an SHG pulse like it is done in a dazzler. SHG of a pump and Self-phase modulation
Self-phase modulation
Self-phase modulation is a nonlinear optical effect of light-matter interaction.An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect...

 (emulated by second order processes) of the signal and an optical parametric amplifier
Optical parametric amplifier
An optical parametric amplifier, abbreviated OPA, is a laser light source that emits light of variable wavelengths by an optical parametric amplification process.-Optical parametric generation :...

 can be integrated monolithically.

Higher-order frequency mixing

The above holds for \chi^{(2)} processes. It can be extended for processes where \chi^{(3)} is nonzero, something that is generally true in any medium without any symmetry restrictions. Third-harmonic generation is a \chi^{(3)} process, although in laser applications, it is usually implemented as a two-stage process: first the fundamental laser frequency is doubled and then the doubled and the fundamental frequencies are added in a sum-frequency process. The Kerr effect can be described as a \chi^{(3)} as well. At high intensities the Taylor series
Taylor series
In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point....

, which led the domination of the lower orders, does not converge anymore and instead a time based model is used. When a noble gas atom is hit by an intense laser pulse, which has an electric field strength comparable to the Coulomb field of the atom, the outermost electron may be ionized from the atom. Once freed, the electron can be accelerated by the electric field of the light, first moving away from the ion, then back toward it as the field changes direction. The electron may then recombine with the ion, releasing its energy in the form of a photon. The light is emitted at every peak of the laser light field which is intense enough, producing a series of attosecond light flashes. The photon energies generated by this process can extend past the 800th harmonic order up to 1300 eV
Electronvolt
In physics, the electron volt is a unit of energy equal to approximately joule . By definition, it is equal to the amount of kinetic energy gained by a single unbound electron when it accelerates through an electric potential difference of one volt...

. This is called high-order harmonic generation
High Harmonic Generation
- Perturbative Harmonic Generation :Perturbative Harmonic Generation is a process whereby laser light of frequency ω and photon energy ħω can be used to generate new frequencies of light. The newly generated frequencies are integer multiples nħω of the original light's frequency...

. The laser must be linearly polarized, so that the electron returns to the vicinity of the parent ion. High-order harmonic generation has been observed in noble gas jets, cells, and gas-filled capillary waveguides.

Frequency Doubling

One of the most commonly used frequency-mixing processes is frequency doubling or second-harmonic generation. With this technique, the 1064-nm output from Nd:YAG lasers or the 800-nm output from Ti:sapphire lasers
Ti-sapphire laser
Ti:sapphire lasers are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses...

 can be converted to visible light, with wavelengths of 532 nm (green) or 400 nm (violet), respectively. Practically, frequency-doubling is carried out by placing a nonlinear medium in a laser beam. While there are many types of nonlinear media, the most common media are crystals. Commonly used crystals are BBO (β-barium borate), KDP (potassium dihydrogen phosphate), KTP (potassium titanyl phosphate
Potassium titanyl phosphate
Potassium titanyl phosphate or KTP is a nonlinear optical material which is commonly used for frequency doubling diode pumped solid-state lasers such as Nd:YAG and other neodymium-doped lasers. The material has a relatively high optical damage threshold , a great optical nonlinearity and excellent...

), and lithium niobate
Lithium niobate
Lithium niobate is a compound of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, optical modulators and various other linear and non-linear optical applications.-Properties:...

. These crystals have the necessary properties of being strongly birefringent
Birefringence
Birefringence, or double refraction, is the decomposition of a ray of light into two rays when it passes through certain anisotropic materials, such as crystals of calcite or boron nitride. The effect was first described by the Danish scientist Rasmus Bartholin in 1669, who saw it in calcite...

 (necessary to obtain phase matching, see below), having a specific crystal symmetry and of course being transparent for both the impinging laser light and the frequency doubled wavelength, and have high damage thresholds which make them resistant against the high-intensity laser light. However, organic polymeric materials are set to take over from crystals as they are cheaper to make, have lower drive voltages and superior performance. {{Citation needed|date=May 2010}}

Optical phase conjugation

It is possible, using nonlinear optical processes, to exactly reverse the propagation direction and phase variation of a beam of light. The reversed beam is called a conjugate beam, and thus the technique is known as optical phase conjugation (also called time reversal, wavefront reversal and retroreflection
Retroreflector
A retroreflector is a device or surface that reflects light back to its source with a minimum scattering of light. An electromagnetic wave front is reflected back along a vector that is parallel to but opposite in direction from the wave's source. The device or surface's angle of incidence is...

). One can interpret this nonlinear optical interaction as being analogous to a real-time holographic process. In this case, the interacting beams simultaneously interact in a nonlinear optical material to form a dynamic hologram (two of the three input beams), or real-time diffraction pattern, in the material. The third incident beam diffracts off this dynamic hologram, and, in the process, reads out the phase-conjugate wave. In effect, all three incident beams interact (essentially) simultaneously to form several real-time holograms, resulting in a set of diffracted output waves that phase up as the "time-reversed" beam. In the language of nonlinear optics, the interacting beams result in a nonlinear polarization within the material, which coherently radiates to form the phase-conjugate wave. The most common way of producing optical phase conjugation is to use a four-wave mixing technique, though it is also possible to use processes such as stimulated Brillouin scattering. A device producing the phase conjugation effect is known as a phase conjugate mirror (PCM). For the four-wave mixing technique, we can describe four beams (j = 1,2,3,4) with electric fields: \Xi_j(\mathbf{x},t) = \frac{1}{2} E_j(\mathbf{x}) e^{i (\omega_j t - \mathbf{k}\cdot\mathbf{x})} + \mbox{c.c.} where Ej are the electric field amplitudes. Ξ1 and Ξ2 are known as the two pump waves, with Ξ3 being the signal wave, and Ξ4 being the generated conjugate wave. If the pump waves and the signal wave are superimposed in a medium with a non-zero χ(3), this produces a nonlinear polarization field: P_{\mbox{NL}} = \epsilon_0 \chi^{(3)} (\Xi_1 + \Xi_2 + \Xi_3)^3\ resulting in generation of waves with frequencies given by ω = ±ω1 ±ω2 ±ω3 in addition to third harmonic generation waves with ω = 3ω1, 3ω2, 3ω3. As above, the phase-matching condition determines which of these waves is the dominant. By choosing conditions such that ω = ω1 + ω2 - ω3 and k = k1 + k2 - k3, this gives a polarization field: P_\omega = \frac{1}{2} \chi^{(3)} \epsilon_0 E_1 E_2 E_3^* e^{i(\omega t - \mathbf{k} \cdot \mathbf{x} ) } + \mbox{c.c.}. This is the generating field for the phase conjugate beam, Ξ4. Its direction is given by k4 = k1 + k2 - k3, and so if the two pump beams are counterpropagating (k1 = -k2), then the conjugate and signal beams propagate in opposite directions (k4 = -k3). This results in the retroreflecting property of the effect. Further, it can be shown for a medium with refractive index n and a beam interaction length l, the electric field amplitude of the conjugate beam is approximated by E_4 = \frac{i \omega l}{2 n c} \chi^{(3)} E_1 E_2 E_3^* (where c is the speed of light). If the pump beams E1 and E2 are plane (counterpropagating) waves, then: E_4(\mathbf{x}) \propto E_3^*(\mathbf{x}); that is, the generated beam amplitude is the complex conjugate of the signal beam amplitude. Since the imaginary part of the amplitude contains the phase of the beam, this results in the reversal of phase property of the effect. Note that the constant of proportionality between the signal and conjugate beams can be greater than 1. This is effectively a mirror with a reflection coefficient greater than 100%, producing an amplified reflection. The power for this comes from the two pump beams, which are depleted by the process. The frequency of the conjugate wave can be different from that of the signal wave. If the pump waves are of frequency ω1 = ω2 = ω, and the signal wave higher in frequency such that ω3 = ω + Δω, then the conjugate wave is of frequency ω4 = ω - Δω. This is known as frequency flipping.

Common SHG materials

NEWLINE
    NEWLINE
  • 800 nm light : BBO
  • NEWLINE
  • 806 nm light : lithium iodate (LiIO3)
  • NEWLINE
  • 860 nm light : potassium niobate (KNbO3)
  • NEWLINE
  • 980 nm light : KNbO3
  • NEWLINE
  • 1064 nm light : monopotassium phosphate
    Monopotassium phosphate
    Monopotassium phosphate -- 24 -- is a soluble salt which is used as a fertilizer, a food additive and a fungicide. It is a source of phosphorus and potassium. It is also a buffering agent...

     (KH2PO4, KDP), lithium triborate
    Lithium triborate
    Lithium triborate LBO is a non-linear optics crystal. It has a wide transparency range, moderately high nonlinear coupling, high damage threshold and desirable chemical and mechanical properties. This crystal is often used for second harmonic generation of Nd:YAG lasers...

     (LBO) and β-barium borate (BBO).
  • NEWLINE
  • 1300 nm light : gallium selenide
    Gallium(II) selenide
    Gallium selenide is a chemical compound. It has a hexagonal layer structure, similar to that of GaS. It is a photoconductor, a second harmonic generation crystal in nonlinear optics, and has been used as a far-infrared conversion material at 14-31 THz and above.-Uses:It is said to have potential...

     (GaSe)
  • NEWLINE
  • 1319 nm light : KNbO3, BBO, KDP, potassium titanyl phosphate
    Potassium titanyl phosphate
    Potassium titanyl phosphate or KTP is a nonlinear optical material which is commonly used for frequency doubling diode pumped solid-state lasers such as Nd:YAG and other neodymium-doped lasers. The material has a relatively high optical damage threshold , a great optical nonlinearity and excellent...

     (KTP), lithium niobate
    Lithium niobate
    Lithium niobate is a compound of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, optical modulators and various other linear and non-linear optical applications.-Properties:...

     (LiNbO3), LiIO3, and ammonium dihydrogen phosphate
    Ammonium dihydrogen phosphate
    Ammonium dihydrogen phosphate , or monoammonium phosphate, NH4H2PO4, is formed when a solution of phosphoric acid is added to ammonia until the solution is distinctly acidic. It crystallizes in tetragonal prisms. Monoammonium phosphate is often used in the blending of dry agricultural fertilizers...

     (ADP)
NEWLINE

See also

NEWLINE
    NEWLINE
  • Born-Infeld action
  • NEWLINE
  • Filament propagation
    Filament propagation
    In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam....

  • NEWLINE
  • :Category:Nonlinear optical materials
  • NEWLINE
  • Parametric process (optics)
    Parametric process (optics)
    A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no transfer of energy, momentum, or angular momentum between the optical field and the physical system...

NEWLINE

External links

NEWLINENEWLINE {{DEFAULTSORT:Nonlinear Optics}}