Laser-hybrid welding
Encyclopedia
Laser Hybrid welding is a type of welding process that combines the principles of laser beam welding
Laser beam welding
Laser beam welding is a welding technique used to join multiple pieces of metal through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates...

 and arc welding
Arc welding
Arc welding is a type of welding that uses a welding power supply to create an electric arc between an electrode and the base material to melt the metals at the welding point. They can use either direct or alternating current, and consumable or non-consumable electrodes...

.

The combination of laser light and an electrical arc into an amalgamated welding process has existed since the 1970s, but has only recently been used in industrial applications. There are three main types of hybrid welding process, depending on the arc used: TIG, Plasma arc or MIG augmented laser welding. While TIG-augmented laser welding was the first to be researched, MIG is the first to go into industry and is commonly known as hybrid laser welding.

Whereas in the early days laser sources still had to prove their suitability for industrial use, today they are standard equipment in many manufacturing enterprises.
The combination of laser welding with another weld process is called a "hybrid welding process". This means that a laser beam and an electrical arc act simultaneously in one welding zone, influencing and supporting each other.

Laser

Laser welding not only requires high laser power but also a high quality beam to obtain the desired "deep-weld effect". The resulting higher quality of beam can be exploited either to obtain a smaller focus diameter or a larger focal distance. A variety of laser types are used for this process, in particular Nd:YAG where the laser light can be transmitted via a water-cooled glass fiber. The beam is projected onto the workpiece by collimating and focusing optics
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...

. Carbon dioxide laser
Carbon dioxide laser
The carbon dioxide laser was one of the earliest gas lasers to be developed , and is still one of the most useful. Carbon dioxide lasers are the highest-power continuous wave lasers that are currently available...

 can also be used where the beam is transmitted via lens or mirrors.

Laser Hybrid process

For welding metallic objects, the laser beam is focused to obtain intensities of more than 1 MW/cm2. When the laser beam hits the surface of the
material, this spot is heated up to vaporization temperature, and a vapor cavity is formed in the weld metal due to the escaping metal vapor. This is known as a keyhole. The extraordinary feature of the weld seam is its high depth-to-width ratio. The energy-flow density of the freely burning arc is slightly more than 100 kW/cm2. Unlike a dual process where two separate weld processes act in succession, hybrid welding may be viewed as a combination of both weld processes acting simultaneously in one and the same process zone. Depending on the kind of arc or laser process used, and depending on the process parameters, the two systems will influence each other in different ways.

The combination of the laser process and the arc process results in an increase in both weld penetration depth and welding speed (as compared to each process alone). The metal vapor escaping from the vapor cavity acts upon the arc plasma. Absorption of the laser radiation in the processing plasma remains negligible. Depending on the ratio of the two power inputs, the character of the overall process may be mainly determined either by the laser or by the arc.

Absorption of the laser radiation is substantially influenced by the temperature of the workpiece surface. Before the laser welding process can start, the initial reflectance must be overcome, especially on aluminum surfaces. This can be achieved by preheating the material. In the hybrid process, the arc heats the metal, helping the laser beam to couple in. After the vaporisation temperature has been reached, the vapor cavity is formed, and nearly all radiation energy can be put into the workpiece. The energy required for this is thus determined by the temperature dependent absorption and by the amount of energy lost by conduction into the rest of the workpiece. In Laser Hybrid welding, using MIG, vaporisation takes place not only from the surface of the workpiece but also from the filler wire, so that more metal vapor is available to facilitate the absorption of the laser radiation.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK