Introduction to general relativity
Encyclopedia
General relativity is a theory
Theory
The English word theory was derived from a technical term in Ancient Greek philosophy. The word theoria, , meant "a looking at, viewing, beholding", and referring to contemplation or speculation, as opposed to action...

 of gravitation
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

 that was developed by Albert Einstein
Albert Einstein
Albert Einstein was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics and one of the most prolific intellects in human history...

 between 1907 and 1915. According to general relativity, the observed gravitational attraction between mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

es results from their warping of space and time.

By the beginning of the 20th century, Newton's law of universal gravitation
Newton's law of universal gravitation
Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them...

 had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton's model, gravity is the result of an attractive force between massive objects. Although even Newton was bothered by the unknown nature of that force, the basic framework was extremely successful at describing motion.

Experiments and observations show that Einstein's description of gravitation accounts for several effects that are unexplained by Newton's law, such as minute anomalies in the orbit
Orbit
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet around the center of a star system, such as the Solar System...

s of Mercury
Mercury (planet)
Mercury is the innermost and smallest planet in the Solar System, orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits...

 and other planet
Planet
A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

s. General relativity also predicts novel effects of gravity, such as gravitational wave
Gravitational wave
In physics, gravitational waves are theoretical ripples in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted to exist by Albert Einstein in 1916 on the basis of his theory of general relativity, gravitational waves theoretically transport energy as...

s, gravitational lens
Gravitational lens
A gravitational lens refers to a distribution of matter between a distant source and an observer, that is capable of bending the light from the source, as it travels towards the observer...

ing and an effect of gravity on time
Time
Time is a part of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify rates of change such as the motions of objects....

 known as gravitational time dilation
Gravitational time dilation
Gravitational time dilation is the effect of time passing at different rates in regions of different gravitational potential; the lower the gravitational potential, the more slowly time passes...

. Many of these predictions have been confirmed by experiment, while others are the subject of ongoing research. For example, although there is indirect evidence for gravitational waves, direct evidence of their existence is still being sought by several teams of scientists in experiments such as the LIGO
LIGO
LIGO, which stands for the Laser Interferometer Gravitational-Wave Observatory, is a large-scale physics experiment aiming to directly detect gravitational waves. Cofounded in 1992 by Kip Thorne and Ronald Drever of Caltech and Rainer Weiss of MIT, LIGO is a joint project between scientists at MIT,...

 and GEO 600
GEO 600
GEO 600 is a gravitational wave detector located near Sarstedt, Germany. This instrument, and its sister interferometric detectors, when operational, are some of the most sensitive gravitational wave detectors ever designed...

 projects.

General relativity has developed into an essential tool in modern astrophysics
Astrophysics
Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior...

. It provides the foundation for the current understanding of black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

s, regions of space where gravitational attraction is so strong that not even light can escape. Their strong gravity is thought to be responsible for the intense radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...

 emitted by certain types of astronomical objects (such as active galactic nuclei
Active galactic nucleus
An active galactic nucleus is a compact region at the centre of a galaxy that has a much higher than normal luminosity over at least some portion, and possibly all, of the electromagnetic spectrum. Such excess emission has been observed in the radio, infrared, optical, ultra-violet, X-ray and...

 or microquasars). General relativity is also part of the framework of the standard Big Bang
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

 model of cosmology
Physical cosmology
Physical cosmology, as a branch of astronomy, is the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution. For most of human history, it was a branch of metaphysics and religion...

.

Although general relativity is not the only relativistic theory of gravity, it is the simplest such theory that is consistent with the experimental data. Nevertheless, a number of open questions remain, the most fundamental of which is how general relativity can be reconciled with the laws of quantum physics
Introduction to quantum mechanics
Quantum mechanics is the body of scientific principles that explains the behavior of matter and its interactions with energy on the scale of atoms and atomic particles....

 to produce a complete and self-consistent theory of quantum gravity
Quantum gravity
Quantum gravity is the field of theoretical physics which attempts to develop scientific models that unify quantum mechanics with general relativity...

.

From special to general relativity

In September 1905, Albert Einstein published his theory of special relativity
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

, which reconciles Newton's laws of motion
Newton's laws of motion
Newton's laws of motion are three physical laws that form the basis for classical mechanics. They describe the relationship between the forces acting on a body and its motion due to those forces...

 with electrodynamics (the interaction between objects with electric charge
Electric charge
Electric charge is a physical property of matter that causes it to experience a force when near other electrically charged matter. Electric charge comes in two types, called positive and negative. Two positively charged substances, or objects, experience a mutual repulsive force, as do two...

). Special relativity introduced a new framework for all of physics by proposing new concepts of space
Space
Space is the boundless, three-dimensional extent in which objects and events occur and have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum...

 and time
Time
Time is a part of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify rates of change such as the motions of objects....

. Some then-accepted physical theories were inconsistent with that framework; a key example was Newton's theory of gravity, which describes the mutual attraction experienced by bodies due to their mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

.

Several physicists, including Einstein, searched for a theory that would reconcile Newton's law of gravity and special relativity. Only Einstein's theory proved to be consistent with experiments and observations. To understand the theory's basic ideas, it is instructive to follow Einstein's thinking between 1907 and 1915, from his simple thought experiment
Thought experiment
A thought experiment or Gedankenexperiment considers some hypothesis, theory, or principle for the purpose of thinking through its consequences...

 involving an observer in free fall to his fully geometric theory of gravity.

Equivalence principle

A person in a free-fall
Free fall
Free fall is any motion of a body where gravity is the only force acting upon it, at least initially. These conditions produce an inertial trajectory so long as gravity remains the only force. Since this definition does not specify velocity, it also applies to objects initially moving upward...

ing elevator experiences weightlessness, and objects either float motionless or drift at constant speed. Since everything in the elevator is falling together, no gravitational effect can be observed. In this way, the experiences of an observer in free fall are indistinguishable from those of an observer in deep space, far from any significant source of gravity. Such observers are the privileged ("inertial") observers Einstein described in his theory of special relativity
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

: observers for whom light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 travels along straight lines at constant speed.

Einstein hypothesized that the similar experiences of weightless observers and inertial observers in special relativity represented a fundamental property of gravity, and he made this the cornerstone of his theory of general relativity, formalized in his equivalence principle
Equivalence principle
In the physics of general relativity, the equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial mass, and to Albert Einstein's assertion that the gravitational "force" as experienced locally while standing on a massive body is actually...

. Roughly speaking, the principle states that a person in a free-falling elevator cannot tell that he is in free fall. Every experiment in such a free-falling environment has the same results as it would for an observer at rest or moving uniformly in deep space, far from all sources of gravity.

Gravity and acceleration

Most effects of gravity vanish in free fall, but effects that seem the same as those of gravity can be produced by an accelerated
Acceleration
In physics, acceleration is the rate of change of velocity with time. In one dimension, acceleration is the rate at which something speeds up or slows down. However, since velocity is a vector, acceleration describes the rate of change of both the magnitude and the direction of velocity. ...

 frame of reference. An observer in a closed room cannot tell which of the following is true:
  • Objects are falling to the floor because the room is resting on the surface of the Earth and the objects are being pulled down by gravity.
  • Objects are falling to the floor because the room is aboard a rocket in space, which is accelerating at 9.81 m/s2
    Metre per second squared
    The metre per second squared is the unit of acceleration in the International System of Units . As a derived unit it is composed from the SI base units of length, the metre, and the standard unit of time, the second...

     and is far from any source of gravity. The objects are being pulled towards the floor by the same "inertial force" that presses the driver of an accelerating car into the back of his seat.


Conversely, any effect observed in an accelerated reference frame should also be observed in a gravitational field of corresponding strength. This principle allowed Einstein to predict several novel effects of gravity in 1907, as explained in the next section.

An observer in an accelerated reference frame must introduce what physicists call fictitious forces to account for the acceleration experienced by himself and objects around him. One example, the force pressing the driver of an accelerating car into his or her seat, has already been mentioned; another is the force you can feel pulling your arms up and out if you attempt to spin around like a top. Einstein's master insight was that the constant, familiar pull of the Earth's gravitational field is fundamentally the same as these fictitious forces. The apparent magnitude of the fictitious forces always appears to be proportional to the mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

 of any object on which they act - for instance, the driver's seat exerts just enough force to accelerate the driver at the same rate as the car. By analogy, Einstein proposed that an object in a gravitational field should feel a gravitational force proportional to its mass, as embodied in Newton's law of gravitation.

Physical consequences

In 1907, Einstein was still eight years away from completing the general theory of relativity. Nonetheless, he was able to make a number of novel, testable predictions that were based on his starting point for developing his new theory: the equivalence principle.

The first new effect is the gravitational frequency shift of light. Consider two observers aboard an accelerating rocket-ship. Aboard such a ship, there is a natural concept of "up" and "down": the direction in which the ship accelerates is "up", and unattached objects accelerate in the opposite direction, falling "downward". Assume that one of the observers is "higher up" than the other. When the lower observer sends a light signal to the higher observer, the acceleration causes the light to be red-shifted, as may be calculated from special relativity
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

; the second observer will measure a lower frequency
Frequency
Frequency is the number of occurrences of a repeating event per unit time. It is also referred to as temporal frequency.The period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency...

 for the light than the first. Conversely, light sent from the higher observer to the lower is blue-shifted, that is, shifted towards higher frequencies. Einstein argued that such frequency shifts must also be observed in a gravitational field. This is illustrated in the figure at left, which shows a light wave that is gradually red-shifted as it works its way upwards against the gravitational acceleration. This effect has been confirmed experimentally, as described below.

This gravitational frequency shift corresponds to a gravitational time dilation
Gravitational time dilation
Gravitational time dilation is the effect of time passing at different rates in regions of different gravitational potential; the lower the gravitational potential, the more slowly time passes...

: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers who are lower in a gravitational field.

It is important to stress that, for each observer, there are no observable changes of the flow of time for events or processes that are at rest in his or her reference frame. Five-minute-eggs as timed by each observer's clock have the same consistency; as one year passes on each clock, each observer ages by that amount; each clock, in short, is in perfect agreement with all processes happening in its immediate vicinity. It is only when the clocks are compared between separate observers that one can notice that time runs more slowly for the lower observer than for the higher. This effect is minute, but it too has been confirmed experimentally in multiple experiments, as described below.

In a similar way, Einstein predicted the gravitational deflection of light: in a gravitational field, light is deflected downward. Quantitatively, his results were off by a factor of two; the correct derivation requires a more complete formulation of the theory of general relativity, not just the equivalence principle.

Tidal effects

The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious force
Fictitious force
A fictitious force, also called a pseudo force, d'Alembert force or inertial force, is an apparent force that acts on all masses in a non-inertial frame of reference, such as a rotating reference frame....

s are to be expected, provides a suitable explanation. But a freely falling reference frame on one side of the Earth cannot explain why the people on the opposite side of the Earth experience a gravitational pull in the opposite direction.

A more basic manifestation of the same effect involves two bodies that are falling side by side towards the Earth. In a reference frame that is in free fall alongside these bodies, they appear to hover weightlessly – but not exactly so. These bodies are not falling in precisely the same direction, but towards a single point in space: namely, the Earth's center of gravity
Center of mass
In physics, the center of mass or barycenter of a system is the average location of all of its mass. In the case of a rigid body, the position of the center of mass is fixed in relation to the body...

. Consequently, there is a component of each body's motion towards the other (see the figure). In a small environment such as a freely falling lift, this relative acceleration is minuscule, while for skydiver
Skydiver
A skydiver is a person who engages in the sport of parachuting. It may also refer to:* SkyDiver a futuristic submarine featured in the TV series UFO* "Skydiver" a carnival ride produced by Chance Morgan...

s on opposite sides of the Earth, the effect is large. Such differences in force are also responsible for the tides in the Earth's oceans, so the term "tidal effect" is used for this phenomenon.

The equivalence between inertia and gravity cannot explain tidal effects – it cannot explain variations in the gravitational field. For that, a theory is needed which describes the way that matter (such as the large mass of the Earth) affects the inertial environment around it.

From acceleration to geometry

In exploring the equivalence of gravity and acceleration as well as the role of tidal forces, Einstein discovered several analogies with the geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

 of surface
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball...

s. An example is the transition from an inertial reference frame (in which free particles coast along straight paths at constant speeds) to a rotating reference frame (in which extra terms corresponding to fictitious force
Fictitious force
A fictitious force, also called a pseudo force, d'Alembert force or inertial force, is an apparent force that acts on all masses in a non-inertial frame of reference, such as a rotating reference frame....

s have to be introduced in order to explain particle motion): this is analogous to the transition from a Cartesian
Cartesian coordinate system
A Cartesian coordinate system specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length...

 coordinate system
Coordinate system
In geometry, a coordinate system is a system which uses one or more numbers, or coordinates, to uniquely determine the position of a point or other geometric element. The order of the coordinates is significant and they are sometimes identified by their position in an ordered tuple and sometimes by...

 (in which the coordinate lines are straight lines) to a curved coordinate system
Curvilinear coordinates
Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given...

 (where coordinate lines need not be straight).

A deeper analogy relates tidal forces with a property of surfaces called curvature
Curvature
In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context...

. For gravitational fields, the absence or presence of tidal forces determines whether or not the influence of gravity can be eliminated by choosing a freely falling reference frame. Similarly, the absence or presence of curvature determines whether or not a surface is equivalent
Isometry
In mathematics, an isometry is a distance-preserving map between metric spaces. Geometric figures which can be related by an isometry are called congruent.Isometries are often used in constructions where one space is embedded in another space...

 to a plane
Plane (mathematics)
In mathematics, a plane is a flat, two-dimensional surface. A plane is the two dimensional analogue of a point , a line and a space...

. In the summer of 1912, inspired by these analogies, Einstein searched for a geometric formulation of gravity.

The elementary objects of geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

 – points
Point (geometry)
In geometry, topology and related branches of mathematics a spatial point is a primitive notion upon which other concepts may be defined. In geometry, points are zero-dimensional; i.e., they do not have volume, area, length, or any other higher-dimensional analogue. In branches of mathematics...

, lines
Line (mathematics)
The notion of line or straight line was introduced by the ancient mathematicians to represent straight objects with negligible width and depth. Lines are an idealization of such objects...

, triangle
Triangle
A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ....

s – are traditionally defined in three-dimensional space
Space
Space is the boundless, three-dimensional extent in which objects and events occur and have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum...

 or on two-dimensional surface
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball...

s. In 1907, the mathematician Hermann Minkowski
Hermann Minkowski
Hermann Minkowski was a German mathematician of Ashkenazi Jewish descent, who created and developed the geometry of numbers and who used geometrical methods to solve difficult problems in number theory, mathematical physics, and the theory of relativity.- Life and work :Hermann Minkowski was born...

 introduced a geometric formulation of Einstein's special theory of relativity in which the geometry included not only space
Space
Space is the boundless, three-dimensional extent in which objects and events occur and have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum...

, but also time
Time
Time is a part of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify rates of change such as the motions of objects....

. The basic entity of this new geometry is four-dimension
Dimension
In physics and mathematics, the dimension of a space or object is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one because only one coordinate is needed to specify a point on it...

al spacetime
Spacetime
In physics, spacetime is any mathematical model that combines space and time into a single continuum. Spacetime is usually interpreted with space as being three-dimensional and time playing the role of a fourth dimension that is of a different sort from the spatial dimensions...

. The orbits of moving bodies are curves in spacetime
World line
In physics, the world line of an object is the unique path of that object as it travels through 4-dimensional spacetime. The concept of "world line" is distinguished from the concept of "orbit" or "trajectory" by the time dimension, and typically encompasses a large area of spacetime wherein...

; the orbits of bodies moving at constant speed without changing direction correspond to straight lines.

For surfaces, the generalization from the geometry of a plane – a flat surface – to that of a general curved surface had been described in the early 19th century by Carl Friedrich Gauss
Carl Friedrich Gauss
Johann Carl Friedrich Gauss was a German mathematician and scientist who contributed significantly to many fields, including number theory, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy and optics.Sometimes referred to as the Princeps mathematicorum...

. This description had in turn been generalized to higher-dimensional spaces in a mathematical formalism introduced by Bernhard Riemann
Bernhard Riemann
Georg Friedrich Bernhard Riemann was an influential German mathematician who made lasting contributions to analysis and differential geometry, some of them enabling the later development of general relativity....

 in the 1850s. With the help of Riemannian geometry
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point which varies smoothly from point to point. This gives, in particular, local notions of angle, length...

, Einstein formulated a geometric description of gravity in which Minkowski's spacetime is replaced by distorted, curved spacetime, just as curved surfaces are a generalization of ordinary plane surfaces.

After he had realized the validity of this geometric analogy, it took Einstein a further three years to find the missing cornerstone of his theory: the equations describing how matter
Matter
Matter is a general term for the substance of which all physical objects consist. Typically, matter includes atoms and other particles which have mass. A common way of defining matter is as anything that has mass and occupies volume...

 influences spacetime's curvature. Having formulated what are now known as Einstein's equations (or, more precisely, his field equations of gravity), he presented his new theory of gravity at several sessions of the Prussian Academy of Sciences
Prussian Academy of Sciences
The Prussian Academy of Sciences was an academy established in Berlin on 11 July 1700, four years after the Akademie der Künste or "Arts Academy", to which "Berlin Academy" may also refer.-Origins:...

 in late 1915.

Geometry and gravitation

Paraphrasing John Wheeler
John Archibald Wheeler
John Archibald Wheeler was an American theoretical physicist who was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr in explaining the basic principles behind nuclear fission...

, Einstein's geometric theory of gravity can be summarized thus: spacetime tells matter how to move; matter tells spacetime how to curve. What this means is addressed in the following three sections, which explore the motion of so-called test particles, examine which properties of matter serve as a source for gravity, and, finally, introduce Einstein's equations, which relate these matter properties to the curvature of spacetime.

Probing the gravitational field

In order to map a body's gravitational influence, it is useful to think about what physicists call probe or test particle
Test particle
In physical theories, a test particle is an idealized model of an object whose physical properties are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter the behavior of the rest of the system...

s: particles that are influenced by gravity, but are so small and light that we can neglect
Negligible
Negligible refers to the quantities so small that they can be ignored when studying the larger effect. Although related to the more mathematical concepts of infinitesimal, the idea of negligibility is particularly useful in practical disciplines like physics, chemistry, mechanical and electronic...

 their own gravitational effect. In the absence of gravity and other external forces, a test particle moves along a straight line at a constant speed. In the language of spacetime
Spacetime
In physics, spacetime is any mathematical model that combines space and time into a single continuum. Spacetime is usually interpreted with space as being three-dimensional and time playing the role of a fourth dimension that is of a different sort from the spatial dimensions...

, this is equivalent to saying that such test particles move along straight world lines in spacetime. In the presence of gravity, spacetime is non-Euclidean, or curved
Curvature
In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context...

, and in curved spacetime straight world lines may not exist. Instead, test particles move along lines called geodesic
Geodesic
In mathematics, a geodesic is a generalization of the notion of a "straight line" to "curved spaces". In the presence of a Riemannian metric, geodesics are defined to be the shortest path between points in the space...

s, which are "as straight as possible".

A simple analogy is the following: In geodesy
Geodesy
Geodesy , also named geodetics, a branch of earth sciences, is the scientific discipline that deals with the measurement and representation of the Earth, including its gravitational field, in a three-dimensional time-varying space. Geodesists also study geodynamical phenomena such as crustal...

, the science of measuring Earth's size and shape, a geodesic (from Greek "geo", Earth, and "daiein", to divide) is the shortest route between two points on the Earth's surface. Approximately, such a route is a segment of a great circle
Great circle
A great circle, also known as a Riemannian circle, of a sphere is the intersection of the sphere and a plane which passes through the center point of the sphere, as opposed to a general circle of a sphere where the plane is not required to pass through the center...

, such as a line of longitude or the equator
Equator
An equator is the intersection of a sphere's surface with the plane perpendicular to the sphere's axis of rotation and containing the sphere's center of mass....

. These paths are certainly not straight, simply because they must follow the curvature of the Earth's surface. But they are as straight as is possible subject to this constraint.

The properties of geodesics differ from those of straight lines. For example, on a plane, parallel lines never meet, but this is not so for geodesics on the surface of the Earth: for example, lines of longitude are parallel at the equator, but intersect at the poles. Analogously, the world lines of test particles in free fall are spacetime geodesics
Geodesic (general relativity)
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational, force is a particular type of geodesic...

, the straightest possible lines in spacetime. But still there are crucial differences between them and the truly straight lines that can be traced out in the gravity-free spacetime of special relativity. In special relativity, parallel geodesics remain parallel. In a gravitational field with tidal effects, this will not, in general, be the case. If, for example, two bodies are initially at rest relative to each other, but are then dropped in the Earth's gravitational field, they will move towards each other as they fall towards the Earth's center.

Compared with planets and other astronomical bodies, the objects of everyday life (people, cars, houses, even mountains) have little mass. Where such objects are concerned, the laws governing the behavior of test particles are sufficient to describe what happens. Notably, in order to deflect a test particle from its geodesic path, an external force must be applied. A person sitting on a chair is trying to follow a geodesic, that is, to fall freely
Free fall
Free fall is any motion of a body where gravity is the only force acting upon it, at least initially. These conditions produce an inertial trajectory so long as gravity remains the only force. Since this definition does not specify velocity, it also applies to objects initially moving upward...

 towards the center of the Earth. But the chair applies an external upwards force preventing the person from falling. In this way, general relativity explains the daily experience of gravity on the surface of the Earth not as the downwards pull of a gravitational force, but as the upwards push of external forces. These forces deflect all bodies resting on the Earth's surface from the geodesics they would otherwise follow. For matter objects whose own gravitational influence cannot be neglected, the laws of motion are somewhat more complicated than for test particles, although it remains true that spacetime tells matter how to move.

Sources of gravity

In Newton's description of gravity, the gravitational force is caused by matter. More precisely, it is caused by a specific property of material objects: their mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

. In Einstein's theory and related theories of gravitation, curvature at every point in spacetime is also caused by whatever matter is present. Here, too, mass is a key property in determining the gravitational influence of matter. But in a relativistic theory of gravity, mass cannot be the only source of gravity. Relativity links mass with energy, and energy with momentum.

The equivalence between mass and energy
Energy
In physics, energy is an indirectly observed quantity. It is often understood as the ability a physical system has to do work on other physical systems...

, as expressed by the formula E = mc2
Mass-energy equivalence
In physics, mass–energy equivalence is the concept that the mass of a body is a measure of its energy content. In this concept, mass is a property of all energy, and energy is a property of all mass, and the two properties are connected by a constant...

, is perhaps the most famous consequence of special relativity. In relativity, mass and energy are two different ways of describing one physical quantity. If a physical system has energy, it also has the corresponding mass, and vice versa. In particular, all properties of a body that are associated with energy, such as its temperature
Temperature
Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Objects of low temperature are cold, while various degrees of higher temperatures are referred to as warm or hot...

 or the binding energy
Binding energy
Binding energy is the mechanical energy required to disassemble a whole into separate parts. A bound system typically has a lower potential energy than its constituent parts; this is what keeps the system together—often this means that energy is released upon the creation of a bound state...

 of systems such as nuclei
Atomic nucleus
The nucleus is the very dense region consisting of protons and neutrons at the center of an atom. It was discovered in 1911, as a result of Ernest Rutherford's interpretation of the famous 1909 Rutherford experiment performed by Hans Geiger and Ernest Marsden, under the direction of Rutherford. The...

 or molecules, contribute to that body's mass, and hence act as sources of gravity.

In special relativity, energy is closely connected to momentum
Momentum
In classical mechanics, linear momentum or translational momentum is the product of the mass and velocity of an object...

. Just as space and time are, in that theory, different aspects of a more comprehensive entity called spacetime, energy and momentum are merely different aspects of a unified, four-dimensional quantity that physicists call four-momentum
Four-momentum
In special relativity, four-momentum is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime...

. In consequence, if energy is a source of gravity, momentum must be a source as well. The same is true for quantities that are directly related to energy and momentum, namely internal pressure
Pressure
Pressure is the force per unit area applied in a direction perpendicular to the surface of an object. Gauge pressure is the pressure relative to the local atmospheric or ambient pressure.- Definition :...

 and tension. Taken together, in general relativity it is mass, energy, momentum, pressure and tension that serve as sources of gravity: they are how matter tells spacetime how to curve. In the theory's mathematical formulation, all these quantities are but aspects of a more general physical quantity called the energy-momentum tensor
Stress-energy tensor
The stress–energy tensor is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields...

.

Einstein's equations

Einstein's equations are the centerpiece of general relativity. They provide a precise formulation of the relationship between spacetime geometry and the properties of matter, using the language of mathematics. More concretely, they are formulated using the concepts of Riemannian geometry
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point which varies smoothly from point to point. This gives, in particular, local notions of angle, length...

, in which the geometric properties of a space (or a spacetime) are described by a quantity called a metric. The metric encodes the information needed to compute the fundamental geometric notions of distance and angle in a curved space (or spacetime).

A spherical surface like that of the Earth provides a simple example. The location of any point on the surface can be described by two coordinates: the geographic latitude
Latitude
In geography, the latitude of a location on the Earth is the angular distance of that location south or north of the Equator. The latitude is an angle, and is usually measured in degrees . The equator has a latitude of 0°, the North pole has a latitude of 90° north , and the South pole has a...

 and longitude
Longitude
Longitude is a geographic coordinate that specifies the east-west position of a point on the Earth's surface. It is an angular measurement, usually expressed in degrees, minutes and seconds, and denoted by the Greek letter lambda ....

. Unlike the Cartesian coordinates of the plane, coordinate differences are not the same as distances on the surface, as shown in the diagram on the right: for someone at the equator, moving 30 degrees of longitude westward (magenta line) corresponds to a distance of roughly 3300 kilometres (2,050.5 mi). On the other hand, someone at a latitude of 55 degrees, moving 30 degrees of longitude westward (blue line) covers a distance of merely 1900 kilometres (1,180.6 mi). Coordinates therefore do not provide enough information to describe the geometry of a spherical surface, or indeed the geometry of any more complicated space or spacetime. That information is precisely what is encoded in the metric, which is a function defined at each point of the surface (or space, or spacetime) and relates coordinate differences to differences in distance. All other quantities that are of interest in geometry, such as the length of any given curve, or the angle at which two curves meet, can be computed from this metric function.

The metric function and its rate of change from point to point can be used to define a geometrical quantity called the Riemann curvature tensor
Riemann curvature tensor
In the mathematical field of differential geometry, the Riemann curvature tensor, or Riemann–Christoffel tensor after Bernhard Riemann and Elwin Bruno Christoffel, is the most standard way to express curvature of Riemannian manifolds...

, which describes exactly how the space (or spacetime) is curved at each point. In general relativity, the metric and the Riemann curvature tensor are quantities defined at each point in spacetime. As has already been mentioned, the matter content of the spacetime defines another quantity, the Energy-momentum tensor
Stress-energy tensor
The stress–energy tensor is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields...

 T, and the principle that "spacetime tells matter how to move, and matter tells spacetime how to curve" means that these quantities must be related to each other. Einstein formulated this relation by using the Riemann curvature tensor and the metric to define another geometrical quantity G, now called the Einstein tensor
Einstein tensor
In differential geometry, the Einstein tensor , named after Albert Einstein, is used to express the curvature of a Riemannian manifold...

, which describes some aspects of the way spacetime is curved. Einstein's equation then states that


i.e., up to a constant multiple, the quantity G (which measures curvature) is equated with the quantity T (which measures matter content). The constants involved in this equation reflect the different theories that went into its making: G is the gravitational constant
Gravitational constant
The gravitational constant, denoted G, is an empirical physical constant involved in the calculation of the gravitational attraction between objects with mass. It appears in Newton's law of universal gravitation and in Einstein's theory of general relativity. It is also known as the universal...

 that is already present in Newtonian gravity; c is the speed of light
Speed of light
The speed of light in vacuum, usually denoted by c, is a physical constant important in many areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the metre is defined from this constant and the international standard for time...

, the key constant in special relativity; and π
Pi
' is a mathematical constant that is the ratio of any circle's circumference to its diameter. is approximately equal to 3.14. Many formulae in mathematics, science, and engineering involve , which makes it one of the most important mathematical constants...

 is one of the basic constants of geometry.

This equation is often referred to in the plural as Einstein's equations, since the quantities G and T are each determined by several functions of the coordinates of spacetime, and the equations equate each of these component functions. A solution of these equations describes a particular geometry of space and time; for example, the Schwarzschild solution
Schwarzschild metric
In Einstein's theory of general relativity, the Schwarzschild solution describes the gravitational field outside a spherical, uncharged, non-rotating mass such as a star, planet, or black hole. It is also a good approximation to the gravitational field of a slowly rotating body like the Earth or...

 describes the geometry around a spherical, non-rotating mass such as a star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

 or a black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

, whereas the Kerr solution
Kerr metric
The Kerr metric describes the geometry of empty spacetime around an uncharged axially-symmetric black-hole with an event horizon which is topologically a sphere. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which...

 describes a rotating black hole. Still other solutions can describe a gravitational wave
Gravitational wave
In physics, gravitational waves are theoretical ripples in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted to exist by Albert Einstein in 1916 on the basis of his theory of general relativity, gravitational waves theoretically transport energy as...

 or, in the case of the Friedmann–Lemaître–Robertson–Walker solution, an expanding universe. The simplest solution is the uncurved Minkowski spacetime, the spacetime described by special relativity.

Experimental tests

No scientific theory is apodictically true; each is a model that must be checked by experiment. Newton's law of gravity was accepted because it accounted for the motion of planets and moons in the solar system with exquisite accuracy. As the precision of experimental measurements gradually improved, some discrepancies with Newton's predictions were observed, and these were accounted for in the general theory of relativity. Similarly, the predictions of general relativity must also be checked with experiment, and Einstein himself devised three tests now known as the classical tests of the theory:
  • Newtonian gravity predicts that the orbit
    Orbit
    In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet around the center of a star system, such as the Solar System...

     which a single planet
    Planet
    A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

     traces around a perfectly spherical star
    Star
    A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

     should be an ellipse
    Ellipse
    In geometry, an ellipse is a plane curve that results from the intersection of a cone by a plane in a way that produces a closed curve. Circles are special cases of ellipses, obtained when the cutting plane is orthogonal to the cone's axis...

    . Einstein's theory predicts a more complicated curve: the planet behaves as if it were travelling around an ellipse, but at the same time, the ellipse as a whole is rotating slowly around the star. In the diagram on the right, the ellipse predicted by Newtonian gravity is shown in red, and part of the orbit predicted by Einstein in blue. For a planet orbiting the Sun
    Sun
    The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

    , this deviation from Newton's orbits is known as the anomalous perihelion shift. The first measurement of this effect, for the planet Mercury
    Mercury (planet)
    Mercury is the innermost and smallest planet in the Solar System, orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits...

    , dates back to 1859. The most accurate results for Mercury and for other planets to date are based on measurements which were undertaken between 1966 and 1990, using radio telescope
    Radio telescope
    A radio telescope is a form of directional radio antenna used in radio astronomy. The same types of antennas are also used in tracking and collecting data from satellites and space probes...

    s. General relativity predicts the correct anomalous perihelion shift for all planets where this can be measured accurately (Mercury
    Mercury (planet)
    Mercury is the innermost and smallest planet in the Solar System, orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits...

    , Venus
    Venus
    Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after Venus, the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows...

     and the Earth
    Earth
    Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets...

    ).
  • According to general relativity, light does not travel along straight lines when it propagates in a gravitational field. Instead, it is deflected in the presence of massive bodies. In particular, starlight is deflected as it passes near the Sun
    Sun
    The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

    , leading to apparent shifts of up 1.75 arc second
    Minute of arc
    A minute of arc, arcminute, or minute of angle , is a unit of angular measurement equal to one sixtieth of one degree. In turn, a second of arc or arcsecond is one sixtieth of one minute of arc....

    s in the stars' positions in the night sky (an arc second is equal to 1/3600 of a degree
    Degree (angle)
    A degree , usually denoted by ° , is a measurement of plane angle, representing 1⁄360 of a full rotation; one degree is equivalent to π/180 radians...

    ). In the framework of Newtonian gravity, a heuristic argument can be made that leads to light deflection by half that amount. The different predictions can be tested by observing stars that are close to the Sun during a solar eclipse
    Solar eclipse
    As seen from the Earth, a solar eclipse occurs when the Moon passes between the Sun and the Earth, and the Moon fully or partially blocks the Sun as viewed from a location on Earth. This can happen only during a new moon, when the Sun and the Moon are in conjunction as seen from Earth. At least...

    . In this way, a British expedition to West Africa in 1919, directed by Arthur Eddington, confirmed that Einstein's prediction was correct, and the Newtonian predictions wrong, via observation of the May 1919 eclipse
    Solar eclipse of May 29, 1919
    A total solar eclipse occurred on May 29, 1919. With a maximum duration of totality of 6 minutes 51 seconds, it was one of the longest solar eclipses of the 20th century. It was visible throughout most of South America and Africa as a partial eclipse...

    . Eddington's results were not very accurate; subsequent observations of the deflection of the light of distant quasar
    Quasar
    A quasi-stellar radio source is a very energetic and distant active galactic nucleus. Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than...

    s by the Sun, which utilize highly accurate techniques of radio astronomy
    Radio astronomy
    Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The initial detection of radio waves from an astronomical object was made in the 1930s, when Karl Jansky observed radiation coming from the Milky Way. Subsequent observations have identified a number of...

    , have confirmed Eddington's results with significantly better precision (the first such measurements date from 1967, the most recent comprehensive analysis from 2004).
  • Gravitational redshift
    Gravitational redshift
    In astrophysics, gravitational redshift or Einstein shift describes light or other forms of electromagnetic radiation of certain wavelengths that originate from a source that is in a region of a stronger gravitational field that appear to be of longer wavelength, or redshifted, when seen or...

     was first measured in a laboratory setting in 1959 by Pound and Rebka
    Pound-Rebka experiment
    The Pound–Rebka experiment is a well known experiment to test Albert Einstein's theory of general relativity. It was proposed by Robert Pound and his graduate student Glen A. Rebka Jr. in 1959, and was the last of the classical tests of general relativity to be verified...

    . It is also seen in astrophysical measurements, notably for light escaping the White Dwarf
    White dwarf
    A white dwarf, also called a degenerate dwarf, is a small star composed mostly of electron-degenerate matter. They are very dense; a white dwarf's mass is comparable to that of the Sun and its volume is comparable to that of the Earth. Its faint luminosity comes from the emission of stored...

     Sirius B. The related gravitational time dilation
    Gravitational time dilation
    Gravitational time dilation is the effect of time passing at different rates in regions of different gravitational potential; the lower the gravitational potential, the more slowly time passes...

     effect has been measured by transporting atomic clock
    Atomic clock
    An atomic clock is a clock that uses an electronic transition frequency in the microwave, optical, or ultraviolet region of the electromagnetic spectrum of atoms as a frequency standard for its timekeeping element...

    s to altitudes of between tens and tens of thousands of kilometers (first by Hafele and Keating
    Hafele-Keating experiment
    The Hafele–Keating experiment was a test of the theory of relativity. In October 1971, Joseph C. Hafele, a physicist, and Richard E. Keating, an astronomer, took four cesium-beam atomic clocks aboard commercial airliners and flew twice around the world, first eastward, then westward, and compared...

     in 1971; most accurately to date by Gravity Probe A
    Gravity Probe A
    Gravity Probe A was a space-based experiment to test the theory of general relativity, performed jointly by the Smithsonian Astrophysical Observatory and the National Aeronautics and Space Administration...

     launched in 1976).

Of these tests, only the perihelion advance of Mercury was known prior to Einstein's final publication of general relativity in 1916. The subsequent experimental confirmation of his other predictions, especially the first measurements of the deflection of light by the sun in 1919, catapulted Einstein to international stardom. These three experimental tests justified adopting general relativity over Newton's theory and, incidentally, over a number of alternatives to general relativity
Alternatives to general relativity
Alternatives to general relativity are physical theories that attempt to describe the phenomena of gravitation in competition to Einstein's theory of general relativity.There have been many different attempts at constructing an ideal theory of gravity...

 that had been proposed.

Further tests of general relativity include precision measurements of the Shapiro effect or gravitational time delay for light, most recently in 2002 by the Cassini
Cassini-Huygens
Cassini–Huygens is a joint NASA/ESA/ASI spacecraft mission studying the planet Saturn and its many natural satellites since 2004. Launched in 1997 after nearly two decades of gestation, it includes a Saturn orbiter and an atmospheric probe/lander for the moon Titan, although it has also returned...

 space probe. One set of tests focuses on effects predicted by general relativity for the behavior of gyroscopes travelling through space. One of these effects, geodetic precession
Geodetic effect
The geodetic effect represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body...

, has been tested with the Lunar Laser Ranging Experiment
Lunar laser ranging experiment
The ongoing Lunar Laser Ranging Experiment measures the distance between the Earth and the Moon using laser ranging. Lasers on Earth are aimed at retroreflectors planted on the moon during the Apollo program, and the time for the reflected light to return is determined...

 (high precision measurements of the orbit of the Moon
Moon
The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

). Another, which is related to rotating masses, is called frame-dragging
Frame-dragging
Einstein's general theory of relativity predicts that non-static, stationary mass-energy distributions affect spacetime in a peculiar way giving rise to a phenomenon usually known as frame-dragging...

. The geodetic and frame-dragging effects were both tested by the Gravity Probe B
Gravity Probe B
Gravity Probe B is a satellite-based mission which launched on 20 April 2004 on a Delta II rocket. The spaceflight phase lasted until 2005; its aim was to measure spacetime curvature near Earth, and thereby the stress–energy tensor in and near Earth...

 satellite experiment launched in 2004, with results confirming relativity to within 0.5% and 15%, respectively, as of December 2008.

By cosmic standards, gravity throughout the solar system is weak. Since the differences between the predictions of Einstein's and Newton's theories are most pronounced when gravity is strong, physicists have long been interested in testing various relativistic effects in a setting with comparatively strong gravitational fields. This has become possible thanks to precision observations of binary pulsar
Binary pulsar
A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. Binary pulsars are one of the few objects which allow physicists to test general relativity in the case of a strong gravitational field...

s. In such a star system, two highly compact neutron star
Neutron star
A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

s orbit each other. At least one of them is a pulsar
Pulsar
A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name...

 – an astronomical object that emits a tight beam of radiowaves. These beams strike the Earth at very regular intervals, similarly to the way that the rotating beam of a lighthouse means that an observer sees the lighthouse blink, and can be observed as a highly regular series of pulses. General relativity predicts specific deviations from the regularity of these radio pulses. For instance, at times when the radio waves pass close to the other neutron star, they should be deflected by the star's gravitational field. The observed pulse patterns are impressively close to those predicted by general relativity.

One particular set of observations is related to eminently useful practical applications, namely to satellite navigation systems such as the Global Positioning System
Global Positioning System
The Global Positioning System is a space-based global navigation satellite system that provides location and time information in all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites...

 that are used both for precise positioning
Navigation
Navigation is the process of monitoring and controlling the movement of a craft or vehicle from one place to another. It is also the term of art used for the specialized knowledge used by navigators to perform navigation tasks...

 and timekeeping. Such systems rely on two sets of atomic clocks: clocks aboard satellites orbiting the Earth, and reference clocks stationed on the Earth's surface. General relativity predicts that these two sets of clocks should tick at slightly different rates, due to their different motions (an effect already predicted by special relativity) and their different positions within the Earth's gravitational field. In order to ensure the system's accuracy, the satellite clocks are either slowed down by a relativistic factor, or that same factor is made part of the evaluation algorithm. In turn, tests of the system's accuracy (especially the very thorough measurements that are part of the definition of universal coordinated time) are testament to the validity of the relativistic predictions.

A number of other tests have probed the validity of various versions of the equivalence principle
Equivalence principle
In the physics of general relativity, the equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial mass, and to Albert Einstein's assertion that the gravitational "force" as experienced locally while standing on a massive body is actually...

; strictly speaking, all measurements of gravitational time dilation are tests of the weak version of that principle, not of general relativity itself. So far, general relativity has passed all observational tests.

Astrophysical applications

Models based on general relativity play an important role in astrophysics
Astrophysics
Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior...

, and the success of these models is further testament to the theory's validity.

Gravitational lensing

Since light is deflected in a gravitational field, it is possible for the light of a distant object to reach an observer along two or more paths. For instance, light of a very distant object such as a quasar
Quasar
A quasi-stellar radio source is a very energetic and distant active galactic nucleus. Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than...

 can pass along one side of a massive galaxy
Galaxy
A galaxy is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium of gas and dust, and an important but poorly understood component tentatively dubbed dark matter. The word galaxy is derived from the Greek galaxias , literally "milky", a...

 and be deflected slightly so as to reach an observer on Earth, while light
passing along the opposite side of that same galaxy is deflected as well, reaching the same observer from a slightly different direction. As a result, that particular observer will see one astronomical object in two different places in the night sky. This kind of focussing is well-known when it comes to optical lenses, and hence the corresponding gravitational effect is called gravitational lensing.

Observational astronomy
Observational astronomy
Observational astronomy is a division of the astronomical science that is concerned with getting data, in contrast with theoretical astrophysics which is mainly concerned with finding out the measurable implications of physical models...

 uses lensing effects as an important tool to infer properties of the lensing object. Even in cases where that object is not directly visible, the shape of a lensed image provides information about the mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

 distribution responsible for the light deflection. In particular, gravitational lensing provides one way to measure the distribution of dark matter
Dark matter
In astronomy and cosmology, dark matter is matter that neither emits nor scatters light or other electromagnetic radiation, and so cannot be directly detected via optical or radio astronomy...

, which does not give off light and can be observed only by its gravitational effects. One particularly interesting application are large-scale observations, where the lensing masses are spread out over a significant fraction of the observable universe, and can be used to obtain information about the large-scale properties and evolution of our cosmos.

Gravitational waves

Gravitational wave
Gravitational wave
In physics, gravitational waves are theoretical ripples in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted to exist by Albert Einstein in 1916 on the basis of his theory of general relativity, gravitational waves theoretically transport energy as...

s, a direct consequence of Einstein's theory, are distortions of geometry that propagate at the speed of light, and can be thought of as ripples in spacetime. They should not be confused with the gravity wave
Gravity wave
In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media which has the restoring force of gravity or buoyancy....

s of fluid dynamics
Fluid dynamics
In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the natural science of fluids in motion. It has several subdisciplines itself, including aerodynamics and hydrodynamics...

, which are a different concept.

Indirectly, the effect of gravitational waves has been detected in observations of specific binary stars. Such pairs of stars orbit
Orbit
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet around the center of a star system, such as the Solar System...

 each other and, as they do so, gradually lose energy by emitting gravitational waves. For ordinary stars like our sun, this energy loss would be too small to be detectable, but this energy loss was observed in 1974 in a binary pulsar
Binary pulsar
A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. Binary pulsars are one of the few objects which allow physicists to test general relativity in the case of a strong gravitational field...

 called PSR1913+16. In such a system, one of the orbiting stars is a pulsar. This has two consequences: a pulsar is an extremely dense object known as a neutron star
Neutron star
A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

, for which gravitational wave emission is much stronger than for ordinary stars. Also, a pulsar emits a narrow beam of electromagnetic radiation
Electromagnetic radiation
Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels through space...

 from its magnetic poles. As the pulsar rotates, its beam sweeps over the Earth, where it is seen as a regular series of radio pulses, just as a ship at sea observes regular flashes of light from the rotating light in a lighthouse. This regular pattern of radio pulses functions as a highly accurate "clock". It can be used to time the double star's orbital period, and it reacts sensitively to distortions of space-time in its immediate neighborhood.

The discoverers of PSR1913+16, Russell Hulse
Russell Alan Hulse
Russell Alan Hulse is an American physicist and winner of the Nobel Prize in Physics, shared with his thesis advisor Joseph Hooton Taylor Jr., "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"...

 and Joseph Taylor, were awarded the Nobel Prize in Physics
Nobel Prize in Physics
The Nobel Prize in Physics is awarded once a year by the Royal Swedish Academy of Sciences. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895 and awarded since 1901; the others are the Nobel Prize in Chemistry, Nobel Prize in Literature, Nobel Peace Prize, and...

 in 1993. Since then, several other binary pulsars have been found. The most useful are those in which both stars are pulsars, since they provide the most accurate tests of general relativity.

Currently, one major goal of research in relativity is the direct detection of gravitational waves. To this end, a number of land-based gravitational wave detector
Gravitational wave detector
A gravitational wave detector is any experiment designed to measure gravitational waves, minute distortions of spacetime that are predicted by Einstein's theory of general relativity. The existence of gravitational radiation is a prediction of Einstein's general theory of relativity. Gravitational...

s are in operation, and a mission to launch a space-based detector, LISA
Laser Interferometer Space Antenna
The Laser Interferometer Space Antenna is a planned space mission to detect and accurately measure gravitational waves from astronomical sources. LISA was originally conceived as a joint effort between the United States space agency NASA and the European Space Agency...

, is currently under development, with a precursor mission (LISA Pathfinder
LISA Pathfinder
LISA Pathfinder is the revised name for SMART-2, a NASA/ESA space probe to be launched in June 2013. SMART stands for Small Missions for Advanced Research in Technology. The aim of the LISA Pathfinder is to test technologies needed for the Laser Interferometer Space Antenna, a joint NASA/ESA...

) due for launch in June 2013. If gravitational waves are detected, they could be used to obtain information about compact objects such as neutron star
Neutron star
A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

s and black holes, and also to probe the state of the early universe
Universe
The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

 fractions of a second
Second
The second is a unit of measurement of time, and is the International System of Units base unit of time. It may be measured using a clock....

 after the Big Bang
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

.

Black holes

When mass is concentrated into a sufficiently compact
Hoop Conjecture
The Hoop Conjecture, proposed by Kip Thorne in 1972, states that an imploding object forms a black hole when, and only when, a circular hoop with a specific critical circumference could be placed around the object and rotated...

 region of space, general relativity predicts the formation of a black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

 – a region of space with a gravitational attraction so strong that not even light can escape. Certain types of black holes are thought to be the final state in the evolution
Stellar evolution
Stellar evolution is the process by which a star undergoes a sequence of radical changes during its lifetime. Depending on the mass of the star, this lifetime ranges from only a few million years to trillions of years .Stellar evolution is not studied by observing the life of a single...

 of massive star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

s. On the other hand, supermassive black hole
Supermassive black hole
A supermassive black hole is the largest type of black hole in a galaxy, in the order of hundreds of thousands to billions of solar masses. Most, and possibly all galaxies, including the Milky Way, are believed to contain supermassive black holes at their centers.Supermassive black holes have...

s with the mass of million
Million
One million or one thousand thousand, is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione , from mille, "thousand", plus the augmentative suffix -one.In scientific notation, it is written as or just 106...

s or billion
1000000000 (number)
1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001.In scientific notation, it is written as 109....

s of Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

s are assumed to reside in the cores of most galaxies
Galaxy
A galaxy is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium of gas and dust, and an important but poorly understood component tentatively dubbed dark matter. The word galaxy is derived from the Greek galaxias , literally "milky", a...

, and they play a key role in current models of how galaxies have formed over the past billions of years.

Matter falling onto a compact object is one of the most efficient mechanisms for releasing energy
Energy
In physics, energy is an indirectly observed quantity. It is often understood as the ability a physical system has to do work on other physical systems...

 in the form of radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...

, and matter falling onto black holes is thought to be responsible for some of the brightest astronomical phenomena imaginable. Notable examples of great interest to astronomers are quasars and other types of active galactic nuclei
Active galactic nucleus
An active galactic nucleus is a compact region at the centre of a galaxy that has a much higher than normal luminosity over at least some portion, and possibly all, of the electromagnetic spectrum. Such excess emission has been observed in the radio, infrared, optical, ultra-violet, X-ray and...

. Under the right conditions, falling matter accumulating around a black hole can lead to the formation of jet
Relativistic jet
Relativistic jets are extremely powerful jets of plasma which emerge from presumed massive objects at the centers of some active galaxies, notably radio galaxies and quasars. Their lengths can reach several thousand or even hundreds of thousands of light years...

s, in which focused beams of matter are flung away into space at speeds near that of light.

There are several properties that make black holes most promising sources of gravitational waves. One reason is that black holes are the most compact objects that can orbit each other as part of a binary system; as a result, the gravitational waves emitted by such a system are especially strong. Another reason follows from what are called black hole uniqueness theorems
No hair theorem
The no-hair theorem postulates that all black hole solutions of the Einstein-Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three externally observable classical parameters: mass, electric charge, and angular momentum...

: over time, black holes retain only a minimal set of distinguishing features (since different hair styles are a crucial part of what gives different people their different appearances, these theorems have become known as "no hair" theorems). For instance, in the long term, the collapse of a hypothetical matter cube will not result in a cube-shaped black hole. Instead, the resulting black hole will be indistinguishable from a black hole formed by the collapse of a spherical mass, but with one important difference: in its transition to a spherical shape, the black hole formed by the collapse of a cube will emit gravitational waves.

Cosmology

One of the most important aspects of general relativity is that it can be applied to the universe
Universe
The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

 as a whole. A key point is that, on large scales, our universe appears to be constructed along very simple lines: All current observations suggest that, on average, the structure of the cosmos should be approximately the same, regardless of an observer's location or direction of observation: the universe is approximately homogeneous
Homogeneity (physics)
In general, homogeneity is defined as the quality or state of being homogeneous . For instance, a uniform electric field would be compatible with homogeneity...

 and isotropic. Such comparatively simple universes can be described by simple solutions of Einstein's equations. The current cosmological models
Physical cosmology
Physical cosmology, as a branch of astronomy, is the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution. For most of human history, it was a branch of metaphysics and religion...

 of the universe are obtained by combining these simple solutions to general relativity with theories describing the properties of the universe's matter
Matter
Matter is a general term for the substance of which all physical objects consist. Typically, matter includes atoms and other particles which have mass. A common way of defining matter is as anything that has mass and occupies volume...

 content, namely thermodynamics
Thermodynamics
Thermodynamics is a physical science that studies the effects on material bodies, and on radiation in regions of space, of transfer of heat and of work done on or by the bodies or radiation...

, nuclear-
Nuclear physics
Nuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those...

 and particle physics
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...

. According to these models, our present universe emerged from an extremely dense high-temperature state (the Big Bang
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

)
roughly 14 billion
1000000000 (number)
1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001.In scientific notation, it is written as 109....

 year
Year
A year is the orbital period of the Earth moving around the Sun. For an observer on Earth, this corresponds to the period it takes the Sun to complete one course throughout the zodiac along the ecliptic....

s ago, and has been expanding ever since.

Einstein's equations can be generalized by adding a term called the cosmological constant
Cosmological constant
In physical cosmology, the cosmological constant was proposed by Albert Einstein as a modification of his original theory of general relativity to achieve a stationary universe...

. When this term is present, empty space
Vacuum
In everyday usage, vacuum is a volume of space that is essentially empty of matter, such that its gaseous pressure is much less than atmospheric pressure. The word comes from the Latin term for "empty". A perfect vacuum would be one with no particles in it at all, which is impossible to achieve in...

 itself acts as a source of attractive or, unusually, repulsive gravity. Einstein originally introduced this term in his pioneering 1917 paper on cosmology, with a very specific motivation: contemporary cosmological thought held the universe to be static, and the additional term was required for constructing static model universes within the framework of general relativity. When it became apparent that the universe is not static, but expanding, Einstein was quick to discard this additional term; prematurely, as we know today: From about 1998 on, a steadily accumulating body of astronomical evidence has shown that the expansion of the universe is accelerating in a way that suggests the presence of a cosmological constant or, equivalently, of a dark energy
Dark energy
In physical cosmology, astronomy and celestial mechanics, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe. Dark energy is the most accepted theory to explain recent observations that the universe appears to be expanding...

 with specific properties that pervades all of space.

Modern research: general relativity and beyond

General relativity is very successful in providing a framework for accurate models which describe an impressive array of physical phenomena. On the other hand, there are many interesting open questions, and in particular, the theory as a whole is almost certainly incomplete.

In contrast to all other modern theories of fundamental interaction
Fundamental interaction
In particle physics, fundamental interactions are the ways that elementary particles interact with one another...

s, general relativity is a classical
Classical physics
What "classical physics" refers to depends on the context. When discussing special relativity, it refers to the Newtonian physics which preceded relativity, i.e. the branches of physics based on principles developed before the rise of relativity and quantum mechanics...

 theory: it does not include the effects of quantum physics
Introduction to quantum mechanics
Quantum mechanics is the body of scientific principles that explains the behavior of matter and its interactions with energy on the scale of atoms and atomic particles....

. The quest for a quantum version of general relativity addresses one of the most fundamental open questions in physics. While there are promising candidates for such a theory of quantum gravity
Quantum gravity
Quantum gravity is the field of theoretical physics which attempts to develop scientific models that unify quantum mechanics with general relativity...

, notably string theory
String theory
String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity. It is a contender for a theory of everything , a manner of describing the known fundamental forces and matter in a mathematically complete system...

 and loop quantum gravity
Loop quantum gravity
Loop quantum gravity , also known as loop gravity and quantum geometry, is a proposed quantum theory of spacetime which attempts to reconcile the theories of quantum mechanics and general relativity...

, there is at present no consistent and complete theory. It has long been hoped that a theory of quantum gravity would also eliminate another problematic feature of general relativity: the presence of spacetime singularities. These singularities are boundaries ("sharp edges") of spacetime at which geometry becomes ill-defined, with the consequence that general relativity itself loses its predictive power. Furthermore, there are so-called singularity theorems
Penrose-Hawking singularity theorems
The Penrose–Hawking singularity theorems are a set of results in general relativity which attempt to answer the question of when gravitation produces singularities.A singularity in solutions of the Einstein field equations is one of two things:...

 which predict that such singularities must exist within the universe if the laws of general relativity were to hold without any quantum modifications. The best-known examples are the singularities associated with the model universes that describe black holes and the beginning of the universe
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

.

Other attempts to modify general relativity have been made in the context of cosmology
Cosmology
Cosmology is the discipline that deals with the nature of the Universe as a whole. Cosmologists seek to understand the origin, evolution, structure, and ultimate fate of the Universe at large, as well as the natural laws that keep it in order...

. In the modern cosmological models, most energy in the universe is in forms that have never been detected directly, namely dark energy
Dark energy
In physical cosmology, astronomy and celestial mechanics, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe. Dark energy is the most accepted theory to explain recent observations that the universe appears to be expanding...

 and dark matter
Dark matter
In astronomy and cosmology, dark matter is matter that neither emits nor scatters light or other electromagnetic radiation, and so cannot be directly detected via optical or radio astronomy...

. There have been several controversial proposals to obviate the need for these enigmatic forms of matter and energy, by modifying the laws governing gravity and the dynamics of cosmic expansion, for example modified Newtonian dynamics
Modified Newtonian dynamics
In physics, Modified Newtonian dynamics is a hypothesis that proposes a modification of Newton's law of gravity to explain the galaxy rotation problem. When the uniform velocity of rotation of galaxies was first observed, it was unexpected because Newtonian theory of gravity predicts that objects...

.

It is possible that another reason to modify Einstein's theory can be found much closer to home, in the shape of what is called the Pioneer anomaly
Pioneer anomaly
The Pioneer anomaly or Pioneer effect is the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about on their trajectories out of the Solar System....

, after the Pioneer 10
Pioneer 10
Pioneer 10 is a 258-kilogram robotic space probe that completed the first interplanetary mission to Jupiter, and became the first spacecraft to achieve escape velocity from the Solar System. The project was managed by the NASA Ames Research Center and the contract for the construction of the...

and Pioneer 11
Pioneer 11
Pioneer 11 is a 259-kilogram robotic space probe launched by NASA on April 6, 1973 to study the asteroid belt, the environment around Jupiter and Saturn, solar wind, cosmic rays, and eventually the far reaches of the solar system and heliosphere...

space probe
Space probe
A robotic spacecraft is a spacecraft with no humans on board, that is usually under telerobotic control. A robotic spacecraft designed to make scientific research measurements is often called a space probe. Many space missions are more suited to telerobotic rather than crewed operation, due to...

s. Taking into account all known effects, gravitational or otherwise, it is possible to make very specific predictions for these probes' trajectories. Yet observations show ever-so-slight divergences between these predictions and the actual positions. The possibility of new physics has not been ruled out, despite thorough attempts to find more conventional explanations.

Beyond the challenges of quantum effects and cosmology, research on general relativity is rich with possibilities for further exploration: mathematical relativists explore the nature of singularities and the fundamental properties of Einstein's equations, ever more comprehensive computer simulations of specific spacetimes (such as those describing merging black holes) are run, and the race for the first direct detection of gravitational waves continues apace.
More than ninety years after the theory was first published, research is more active than ever.

See also

  • Introduction to special relativity
    Introduction to special relativity
    In physics, special relativity is a fundamental theory concerning space and time, developed by Albert Einstein in 1905 as a modification of Galilean relativity...

  • History of general relativity
    History of general relativity
    -Overview:General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915...

  • Tests of general relativity
    Tests of general relativity
    At its introduction in 1915, the general theory of relativity did not have a solid empirical foundation. It was known that it correctly accounted for the "anomalous" precession of the perihelion of Mercury and on philosophical grounds it was considered satisfying that it was able to unify Newton's...

  • Numerical relativity
    Numerical relativity
    Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's Theory...


External links

Additional resources, including more advanced material, can be found in General relativity resources.
  • Einstein Online. Website featuring articles on a variety of aspects of relativistic physics for a general audience, hosted by the Max Planck Institute for Gravitational Physics
    Max Planck Institute for Gravitational Physics
    The Max Planck Institute for Gravitational Physics is a Max Planck Institute whose research is aimed at investigating Einstein’s theory of relativity and beyond: Mathematics, quantum gravity, astrophysical relativity, and gravitational wave astronomy...

  • NCSA Spacetime Wrinkles. Website produced by the numerical relativity
    Numerical relativity
    Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's Theory...

     group at the National Center for Supercomputing Applications
    National Center for Supercomputing Applications
    The National Center for Supercomputing Applications is an American state-federal partnership to develop and deploy national-scale cyberinfrastructure that advances science and engineering. NCSA operates as a unit of the University of Illinois at Urbana-Champaign but it provides high-performance...

    , featuring an elementary introduction to general relativity, black hole
    Black hole
    A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

    s and gravitational wave
    Gravitational wave
    In physics, gravitational waves are theoretical ripples in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted to exist by Albert Einstein in 1916 on the basis of his theory of general relativity, gravitational waves theoretically transport energy as...

    s
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK