High Energy Transient Explorer
Encyclopedia
The High Energy Transient Explorer (abbreviated HETE; also known as Explorer 79) was an American
United States
The United States of America is a federal constitutional republic comprising fifty states and a federal district...

 astronomical satellite with international participation (mainly Japan and France). The prime objective of HETE was to carry out the first multiwavelength study of gamma-ray bursts with UV
Ultraviolet
Ultraviolet light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, in the range 10 nm to 400 nm, and energies from 3 eV to 124 eV...

, X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

, and gamma-ray instruments mounted on a single, compact spacecraft. A unique feature of the HETE mission was its capability to localize GRBs with ~10 arc second accuracy in near real time aboard the spacecraft, and to transmit these positions directly to a network of receivers at existing ground-based observatories enabling rapid, sensitive follow-up studies in the radio
Radio
Radio is the transmission of signals through free space by modulation of electromagnetic waves with frequencies below those of visible light. Electromagnetic radiation travels by means of oscillating electromagnetic fields that pass through the air and the vacuum of space...

, IR
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

, and optical bands. The satellite bus for the first HETE was designed and built by AeroAstro, Inc. of Herndon, VA; the replacement satellite, HETE-2, was built by MIT based on the original HETE design.

Launch attempts

The first HETE was lost during the launch on Nov.4, 1996. The Pegasus rocket
Pegasus rocket
The Pegasus rocket is a winged space launch vehicle capable of carrying small, unmanned payloads into low Earth orbit. It is air-launched, as part of an expendable launch system developed by Orbital Sciences Corporation . Three main stages burning solid propellant provide the thrust...

 achieved a good orbit, but explosive bolts releasing HETE from another satellite (Argentina's SAC-B) and from its DPAF envelope failed to charge, dooming both satellites. A battery on the third stage of the rocket and responsible for these bolts cracked during the ascent.

A second HETE satellite, HETE-2, was launched on October 9, 2000 in a follow-up mission. It was similar to the first HETE, but replaced the UV camera with an additional X-ray camera (Soft X-ray Camera or SXC) capable of higher localization accuracy than the original X-ray instrument (Wide-Field X-ray Monitor or WXM).

Achievements

Among the achievements of the HETE-2 mission are:
  1. The discovery of GRB 030329
    GRB 030329
    GRB 030329 was a gamma-ray burst that was detected on 29 March 2003 at 11:37 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived...

    , a widely observed, nearby gamma ray burst, firmly connecting GRBs with supernovas.
  2. The discovery of GRB 050709
    GRB 050709
    GRB 050709 was a gamma-ray burst detected on July 9, 2005. A gamma-ray burst is a highly luminous flash of gamma rays, the most energetic form of electromagnetic radiation, which is often followed by a longer-lived "afterglow" emitting at longer wavelengths .- Observations :GRB 050709 was detected...

    , which was the first short/hard GRB to be found with an optical counterpart, leading to a firm establishment of the cosmological origin of this subclass of GRBs.
  3. Dark bursts, or GRBs previously thought to have no optical counterparts, are not completely optically dark. Some of these dark GRBs fade in the optical very rapidly, others are dimmer but detectable with large (meter class) telescopes.
  4. The establishment of another subclass of GRBs, the less energetic X-Ray Flashes (XRF), and its first optical counterpart.
  5. The first to send out arcminute positions of GRBs to the observation community within tens of seconds of the onset of GRB (and in a few instances, while the burst was ongoing).

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK