Hasse–Minkowski theorem
Encyclopedia
The Hasse–Minkowski theorem is a fundamental result in number theory
Number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers as well...

 which states that two quadratic form
Quadratic form
In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example,4x^2 + 2xy - 3y^2\,\!is a quadratic form in the variables x and y....

s over a number field are equivalent if and only if they are equivalent locally at all places, i.e. equivalent over every completion
Completion (ring theory)
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have...

 of the field (which may be real
Real number
In mathematics, a real number is a value that represents a quantity along a continuum, such as -5 , 4/3 , 8.6 , √2 and π...

, complex
Complex number
A complex number is a number consisting of a real part and an imaginary part. Complex numbers extend the idea of the one-dimensional number line to the two-dimensional complex plane by using the number line for the real part and adding a vertical axis to plot the imaginary part...

, or p-adic
P-adic number
In mathematics, and chiefly number theory, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number systems...

). A special case is that a quadratic space over a number field is isotropic
Isotropic quadratic form
In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which it evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be...

 if and only if it is isotropic locally everywhere, or equivalently, that a quadratic form over a number field nontrivially represents zero if and only if this holds for all completions of the field. The theorem was proved in the case of the field of rational number
Rational number
In mathematics, a rational number is any number that can be expressed as the quotient or fraction a/b of two integers, with the denominator b not equal to zero. Since b may be equal to 1, every integer is a rational number...

s by Hermann Minkowski
Hermann Minkowski
Hermann Minkowski was a German mathematician of Ashkenazi Jewish descent, who created and developed the geometry of numbers and who used geometrical methods to solve difficult problems in number theory, mathematical physics, and the theory of relativity.- Life and work :Hermann Minkowski was born...

 and generalized to number fields by Helmut Hasse
Helmut Hasse
Helmut Hasse was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of p-adic numbers to local classfield theory and diophantine geometry , and to local zeta functions.-Life:He was born in Kassel, and died in...

. The same statement holds even more generally for all global field
Global field
In mathematics, the term global field refers to either of the following:*an algebraic number field, i.e., a finite extension of Q, or*a global function field, i.e., the function field of an algebraic curve over a finite field, equivalently, a finite extension of Fq, the field of rational functions...

s.

The importance of the Hasse–Minkowski theorem lies in the novel paradigm it presented for answering arithmetical questions: in order to determine whether an equation of a certain type has a solution in rational numbers, it is sufficient to test whether it has solutions over complete fields of real and p-adic numbers, where analytic considerations, such as Newton's method
Newton's method
In numerical analysis, Newton's method , named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots of a real-valued function. The algorithm is first in the class of Householder's methods, succeeded by Halley's method...

 and its p-adic analogue, Hensel's lemma
Hensel's lemma
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a polynomial equation has a simple root modulo a prime number , then this root corresponds to a unique root of the same equation modulo any higher power...

, apply. This is encapsulated in the idea of a local-global principle, which is one of the most fundamental techniques in arithmetic geometry.

Application to the classification of quadratic forms

The Hasse–Minkowski theorem reduces the problem of classifying quadratic forms over a number field K up to equivalence to the set of analogous but much simpler questions over local field
Local field
In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology.Given such a field, an absolute value can be defined on it. There are two basic types of local field: those in which the absolute value is archimedean and...

s. Basic invariants of a nonsingular quadratic form are its dimension, which is a positive integer, and its discriminant modulo the squares in K, which is an element of the multiplicative group K*/K*2. In addition, for every place v of K, there is an invariant coming from the completion Kv.
  • Case of R. By Sylvester's law of inertia
    Sylvester's law of inertia
    Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of coordinates...

    , the signature (or, alternatively, the negative index of inertia) is a complete invariant.

  • Case of C. All nonsingular quadratic forms of the same dimension are equivalent.

  • Case of Qp and its algebraic extension
    Algebraic extension
    In abstract algebra, a field extension L/K is called algebraic if every element of L is algebraic over K, i.e. if every element of L is a root of some non-zero polynomial with coefficients in K. Field extensions that are not algebraic, i.e...

    s.
    Forms of the same dimension are classified up to equivalence by their Hasse invariant
    Hasse invariant of a quadratic form
    In mathematics, the Hasse invariant of a quadratic form Q over a field K takes values in the Brauer group Br.The quadratic form Q may be taken as a diagonal form...

    .


These invariants must satisfy some compatibility conditions: a parity relation (the sign of the discriminant must match the negative index of inertia) and a product formula (a local–global relation). Conversely, for every set of invariants satisfying these relations, there is a quadratic form over K with these invariants.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK