Gaseous fission reactor
Encyclopedia
A gas nuclear reactor is a nuclear reactor
Nuclear reactor
A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. Most commonly they are used for generating electricity and for the propulsion of ships. Usually heat from nuclear fission is passed to a working fluid , which runs through turbines that power either ship's...

 in which the nuclear fuel
Nuclear fuel
Nuclear fuel is a material that can be 'consumed' by fission or fusion to derive nuclear energy. Nuclear fuels are the most dense sources of energy available...

 is in a gaseous state rather than liquid or solid. In this type of reactor, the only temperature-limiting materials are the reactor walls. Conventional reactors have stricter limitations because the core
Nuclear reactor core
A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place.- Description :...

 would melt if the fuel temperature were to rise too high. It may also be possible to confine gaseous fission fuel magnetically, electrostatically or electrodynamically so that it would not touch (and melt) the reactor walls. A potential benefit of the gaseous reactor core concept is that instead of relying on the traditional rankine or brayton conversion cycles, it may be possible to extract electricity magnetohydrodynamically, or with simple direct electrostatic conversion of the charged particles.

Theory of operation

The vapor core reactor (VCR), also called a gas core reactor (GCR), has been studied for some time. It would have a gas or vapor core composed of UF4 with some 4He and/or 3He added to increase the electrical conductivity, the vapor core may also have tiny UF4 droplets in it. It has both terrestrial and space based applications. Since the space concept doesn’t necessarily have to be economical in the traditional sense, it allows the enrichment to exceed that which would be acceptable for a terrestrial system. It also allows for a higher ratio of UF4 to helium, which in the terrestrial version would be kept just high enough to ensure criticality in order to increase the efficiency of direct conversion. The terrestrial version is designed for a vapor core inlet temperature of about 1500 K and exit temperature of 2500 K and a UF4 to helium ratio of around 20% to 60%. It is thought that the outlet temperature could be raised to that of the 8000 K to 15000 K range where the exhaust would be a fission-generated non-equilibrium electron gas, which would be of much more importance for a rocket design. A terrestrial version of the VCR’s flow schematic can be found in reference 2 and in the summary of non-classical nuclear systems in the second external link. The space based concept would be cut off at the end of the MHD channel.

Reasoning for He-3 addition

3He may be used in increase the ability of the design to extract energy and be controlled. A few sentences from Anghaie et al. sheds light on the reasoning:
"The power density in the MHD duct is proportional to the product of electrical conductivity, velocity squared and magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

 squared σv²B². Therefore, the enthalpy
Enthalpy
Enthalpy is a measure of the total energy of a thermodynamic system. It includes the internal energy, which is the energy required to create a system, and the amount of energy required to make room for it by displacing its environment and establishing its volume and pressure.Enthalpy is a...

 extraction is very sensitive to the MHD input-output fluid conditions. The vapor core reactor provides a hotter-than-most fluid with potential for adequate thermal equilibrium conductivity and duct velocities. Considering the product v² x B², it is apparent that a light working fluid should dominate the thermal properties and the UF4 fraction should be small. Additional electrical conductivity enhancement might be needed from thermal ionization of suitable seed materials, and from non-equilibrium ionization
Ionization
Ionization is the process of converting an atom or molecule into an ion by adding or removing charged particles such as electrons or other ions. This is often confused with dissociation. A substance may dissociate without necessarily producing ions. As an example, the molecules of table sugar...

 by fission fragments and other ionizing radiation
Ionizing radiation
Ionizing radiation is radiation composed of particles that individually have sufficient energy to remove an electron from an atom or molecule. This ionization produces free radicals, which are atoms or molecules containing unpaired electrons...

 produced by the fissioning process."

Spacecraft

The spacecraft variant of the gaseous fission reactor is called the gas core reactor rocket
Gas core reactor rocket
Gas core reactor rockets are a conceptual type of rocket that is propelled by the exhausted coolant of a gaseous fission reactor. The nuclear fission reactor core may be either a gas or plasma...

. There are two approaches: the open and closed cycle. In the open cycle, the propellant, most likely hydrogen, is fed to the reactor, heated up by the nuclear reaction in the reactor, and exits out the other end. Unfortunately, the propellant will be contaminated by fuel and fission products, and although the problem can be mitigated by engineering the hydrodynamics within the reactor, it renders the rocket design completely unsuitable for use in atmosphere.

One might attempt to circumvent the problem by confining the fission fuel magnetically, in a manner similar to the fusion fuel in a tokamak
Tokamak
A tokamak is a device using a magnetic field to confine a plasma in the shape of a torus . Achieving a stable plasma equilibrium requires magnetic field lines that move around the torus in a helical shape...

. Unfortunately it is not likely that this arrangement will actually work to contain the fuel, since the ratio of ionization to particle momentum is not favourable. Whereas a tokamak would generally work to contain singly ionized deuterium or tritium with a mass of two or three daltons
Atomic mass unit
The unified atomic mass unit or dalton is a unit that is used for indicating mass on an atomic or molecular scale. It is defined as one twelfth of the rest mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state, and has a value of...

, the uranium vapour would be at most triply ionized with a mass of 235 dalton (unit)
Atomic mass unit
The unified atomic mass unit or dalton is a unit that is used for indicating mass on an atomic or molecular scale. It is defined as one twelfth of the rest mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state, and has a value of...

. Since the force imparted by a magnetic field is proportional to the charge on the particle, and the acceleration is proportional to the force divided by the mass of the particle, the magnets required to contain uranium gas would be impractically large; most such designs have focussed on fuel cycles that do not depend upon retaining the fuel in the reactor.

In the closed cycle, the reaction is entirely shielded from the propellant. The reaction is contained in a quartz vessel and the propellant merely flows outside of it, being heated in an indirect fashion. The closed cycle avoids contamination because the propellant can't enter the reactor itself, but the solution carries a significant penalty to the rocket's Isp
Specific impulse
Specific impulse is a way to describe the efficiency of rocket and jet engines. It represents the derivative of the impulse with respect to amount of propellant used, i.e., the thrust divided by the amount of propellant used per unit time. If the "amount" of propellant is given in terms of mass ,...

.

Energy production

For energy production purposes, one might use a container located inside a solenoid. The container is filled with gaseous uranium hexafluoride
Uranium hexafluoride
Uranium hexafluoride , referred to as "hex" in the nuclear industry, is a compound used in the uranium enrichment process that produces fuel for nuclear reactors and nuclear weapons. It forms solid grey crystals at standard temperature and pressure , is highly toxic, reacts violently with water...

, where the uranium is enriched, to a level just short of criticality. Afterward, the uranium hexafluoride is compressed by external means, thus initiating a nuclear chain reaction and a great amount of heat, which in turn causes an expansion of the uranium hexafluoride. Since the UF6 is contained within the vessel, it can't escape and thus compresses elsewhere. The result is a plasma wave moving in the container, and the solenoid converts some of its energy into electricity at an efficiency level of about 20%. In addition, the container must be cooled, and one can extract energy from the coolant by passing it through a heat exchanger and turbine system as in an ordinary thermal power plant.

However, there are enormous problems with corrosion during this arrangement, as the uranium hexafluoride is chemically very reactive.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK