Explosives safety
Encyclopedia
Explosives safety originated as a formal program in the US in the aftermath of World War I
World War I
World War I , which was predominantly called the World War or the Great War from its occurrence until 1939, and the First World War or World War I thereafter, was a major war centred in Europe that began on 28 July 1914 and lasted until 11 November 1918...

 when several ammunition storage areas were destroyed in a series of mishaps. The most serious occurred at Lake Denmark Naval Ammunition Storage Depot, New Jersey, in July, 1926 when an electrical storm led to fires that caused explosions and widespread destruction. The severe property damage and 19 fatalities led Congress to empower a board of Army and Naval officers to investigate the Lake Denmark disaster and determine if similar conditions existed at other ammunition depots. The board reported in its findings that this mishap could recur, prompting Congress
United States Congress
The United States Congress is the bicameral legislature of the federal government of the United States, consisting of the Senate and the House of Representatives. The Congress meets in the United States Capitol in Washington, D.C....

 to establish a permanent board of colonels to develop explosives safety standards and ensure compliance beginning in 1928. This organization evolved into the Department of Defense
United States Department of Defense
The United States Department of Defense is the U.S...

 Explosives Safety Board (DDESB) and is chartered in Title 10 of the US Code. Today, the DDESB authors DOD Manual 6055.9, Ammunition and Explosives Safety Standards. It also evaluates scientific data which may adjust those standards, reviews and approves all explosives site plans for new construction, and conducts worldwide visits to locations containing US title munitions.

US Air Force

The United States Air Force
United States Air Force
The United States Air Force is the aerial warfare service branch of the United States Armed Forces and one of the American uniformed services. Initially part of the United States Army, the USAF was formed as a separate branch of the military on September 18, 1947 under the National Security Act of...

 counterpart to the DDESB is the Air Force Safety Center
Air Force Safety Center
The Air Force Safety Center attempts to prevent mishaps and preserve combat readiness by developing, implementing, executing, and evaluating Air Force aviation, ground, weapons, nuclear surety, space, and system programs. It conducts research to promote safety and awareness and mishap prevention...

 (AFSC/SEW). Similarly safety functions are found at major command headquarters, intermediate command headquarters and at unit level as the weapons safety office. Quantity-Distance (QD) has evolved into the foundation of DOD 6055.9-STD, Ammunition and Explosives Safety Standards. The current Air Force regulation governing explosives safety is Air Force Manual (AFMAN) 91-201. AFMAN 91-201 was written using DODI 6055.9 as a parent regulation, and in most cases will follow the limitations set forth in the DODI (excluding mission specific requirements). The Air Force deviates from DODI 6055.9 using AFMAN 91-201 as their primary source document to allow for deviation from many of the requirements of the DODI as long as the risks of doing so are accepted at the appropriate level.

US Army

The United States Army
United States Army
The United States Army is the main branch of the United States Armed Forces responsible for land-based military operations. It is the largest and oldest established branch of the U.S. military, and is one of seven U.S. uniformed services...

 counterpart to the DDESB is the U.S. Army Technical Center for Explosives Safety (USATCES). The USATCES is located with the Defense Ammunition Center
Defense Ammunition Center (United States)
The Defense Ammunition Center is the Department of Defense’s focal point for ammunition knowledge and logistical support. It is responsible for explosives safety, logistics engineering, transportability, training, depot/garrison doctrine, demilitarization technology, supportability, reliability,...

 on McAlester Army Ammunition Plant
McAlester Army Ammunition Plant
McAlester Army Ammunition Plant’s mission is to produce and renovate conventional ammunition and ammunition related components. The plant stores war reserve and training ammunition. McAlester performs manufacturing, industrial engineering and production product assurance. The plant also receives,...

, near McAlester, Oklahoma . USATCES is responsible for providing ammunition and explosives (A&E) safety worldwide by acting as the field office of the Department of Army Safety responsible for A&E safety. The USATCES also acts as the Army agency having safety oversight of clean-up of Former Used Defense Sites (FUDS)
Formerly Used Defense Sites
Formerly Used Defense Sites is a U.S. military program which is responsible for environmental restoration of all properties that were owned by, leased to, or otherwise possessed by the United States and under the jurisdiction of the Secretary of Defense. There are over 9,800 sites in the United...


and Former Toxic Chemical Agent Sites where munitions from all branches of service disposed of A&E by burial or dumping up until the end of the Vietnam War
Vietnam War
The Vietnam War was a Cold War-era military conflict that occurred in Vietnam, Laos, and Cambodia from 1 November 1955 to the fall of Saigon on 30 April 1975. This war followed the First Indochina War and was fought between North Vietnam, supported by its communist allies, and the government of...

. The USATCES acts as the Army’s safety watchdog for disposal of chemical ammunition at the Army’s Chemical Disposal Facilities. As part of the Army's Joint Munitions Command (JMC) Specially trained Civilian Explosives Safety Personnel [Quality Assurance Specialist (Ammunition Surveillance) (QASAS)] and Safety Specialist that have received specialized training in A&E Safety) from the USATCES are deployed worldwide, wherever the U.S. Army has A&E. Their mission is to provide A&E safety to the soldier, the public, and the environment making sure the Army’s A&E is not only stored safely but ready, reliable, and lethal when the U.S. military needs it.

Quantity-Distance

Quantity-Distance (QD) criteria represents physical limits which cannot be breached without incurring risks, and acceptance of these risks at the appropriate command level. QD applies the “Cardinal Principle” of Explosives Safety which is to expose the least amount of people to the least amount of explosives for the least amount of time. QD experts (Explosives Safety Specialist) determine the risk of exposure by examining blast, fragment, and thermal hazards of a given amount of explosive using the net explosives weight (NEW) and applying accepted protection principles to determine levels of hazard a person is exposed to at a given distance from the explosives. The quantity (amount of NEW) and a given distance from the explosive equals the QD. There are factors that can be used to provide some protection from the effects of the detonation of explosives; however the effects of a blast wave from an explosion cannot be mitigated. Only distance from the blast will provide protection from the blast wave of an explosion.

Net Explosives Weight (NEW)

The net explosives weight (NEW) is based on explosives compounds that are equal to one pound of trinitrotoluene (TNT). A compound may weight two pounds but have the blast effects of only one pound of TNT it is then said to have a NEW of one pound. If the compound weights one pound but has the blast effects of two pounds of TNT the NEW is considered as two pounds NEW. NEW is used to calculate QD by means of a formula of the type D (ft) = K•W^1/3, where “D” is the distance in feet, “K” is a factor (also called K-factor) that is dependent upon the risk assumed or permitted, and “W” is the NEW in pounds. When metric units are used, the symbol “Q” denotes Net Explosive Quantity (NEQ) in kilograms. In the formula D (m) = Km•Q1/3, the distance “D” is expressed in meters. Thus, the units of the K-factor ("K" in the English system) are ft/lb1/3 and ("Km" in the metric system) m/kg1/3. The value of “K” in English units is approximately 2.52 times “Km.” For example, if D (m) = 6•Q1/3, then D (ft) = 15.12•W^1/3. Distance requirements determined by the formula with English units are sometimes expressed by the value of “K,” using the terminology K9, K11, K18, to mean K = 9, K = 11, and K = 18.

Blast Wave Phenomena

Is an incident involving the violent release of energy created by detonation of an explosive devise. The sudden and intense pressure disturbance is termed the “blast wave.” The blast wave is characterized by an almost instantaneous rise from ambient pressure to a peak incident pressure (Pi). This pressure increase or “shock front,” travels radially outward from the detonation point, with a diminishing velocity that is always in excess of the speed of sound in that medium. Gas molecules making up the front move at lower velocities. This velocity, which is called the “particle velocity,” is associated with the “dynamic pressure,” or the pressure formed by the winds produced by the shock front. As the shock front expands into increasingly larger volumes of the medium, the incident pressure decreases and, generally, the duration of the pressure-pulse increase. If the shock wave strikes a rigid surface (e.g., a building) at an angle to the direction of the wave’s propagation, a reflected pressure is instantly developed on the surface and this pressure rises to a value that exceeds the incident pressure. This reflected pressure is a function of the incident wave’s pressure and the angle formed between the rigid surface and the plane of the shock front.

Fragments

An important consideration in the analysis of the hazards associated with an explosion is the effect of any fragments produced. Fragmentation most commonly occur in high explosives events, fragmentation may occur in any incident involving ammunition and explosives (A&E). Depending on their origin, fragments are referred to as “primary” or “secondary” fragments.

Primary fragments result from the shattering of a container (e.g., shell casings, kettles, hoppers, and other containers used in the manufacture of explosives and rocket engine housings) in direct contact with the explosive. These fragments usually are small, initially travel at thousands of feet per second, and may be lethal at long distances from an explosion.

Secondary fragments are debris from structures and other items in close proximity to the explosion. These fragments, which are somewhat larger in size than primary fragments and initially travel at hundreds of feet per second, do not normally travel as far as primary fragments.

Thermal Hazards

Generally, thermal hazards from explosives events are of less concern than blast and fragment hazards. With the release of energy from an explosion is heat. The amount of heat varies with the energetic compound (explosive). All explosives compound molecules are potentially unstable held together with weak bonds in their outer shell. When this weak bond is broken heat and energy is violently released. It normally takes longer for the thermal blast to incur. Injury from thermal effects follows the blast and fragmentation effects which happen almost instantaneously. This does not imply that there is a time lapse between blast and fragmentation effects of explosives; in fact it happens so fast that humans cannot notice the delay without specialized equipment. The time available to react to a thermal event does increases survivability by rapid equipment designed to react in a fragment of a second. The primary effect of the thermal effect from an explosive detonation on structures, material, and ammunition and explosives (A&E) is their partial or total destruction by fire. The primary concern for explosives safety with a fire involving A&E is that it may transition to a more severe reaction, causing detonations of additional or more hazardous explosives devises and placing more people or property at a greater degree of risk of damage, destruction, injury, or death.

Susan Test

Following the 1966 Palomares B-52 crash and the 1968 Thule Air Base B-52 crash, accident investigators concluded that the conventional explosives used at the time in nuclear weapons were not stable
Chemical stability
Chemical stability when used in the technical sense in chemistry, means thermodynamic stability of a chemical system.Thermodynamic stability occurs when a system is in its lowest energy state, or chemical equilibrium with its environment. This may be a dynamic equilibrium, where individual atoms...

 enough to withstand the forces involved in an aircraft accident. The finding triggered research by scientists in the United States into safer conventional explosives that could be used in nuclear weapons. The Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory
The Lawrence Livermore National Laboratory , just outside Livermore, California, is a Federally Funded Research and Development Center founded by the University of California in 1952...

 developed the "Susan Test" — a standard test that uses a special projectile whose design simulates an aircraft accident by squeezing and nipping explosive material between metal surfaces. The test projectile is fired under controlled conditions at a hard surface to measure the reactions and thresholds of different explosives to an impact.

Explosives Safety Specialist

This is a highly trained and skilled civilian professional usually a QASAS or a Safety Specialist that has been trained to evaluate risk and hazards involved with conventional, guided missiles and toxic chemical ammunition operations. Department of Defense Standards requires that only trained and certified personnel are permitted to participate in operations involving ammunition, explosives, and/or explosive components, guided missiles, and toxic chemicals. They are responsible for providing protection from the effects of ammunition and explosives by evaluation of a set of standards developed by the Department of Defense and reinforced by additional regulations by the branch of military service responsible for the explosives item.
They develop safety programs to minimize losses due to injuries and property damage. They try to eliminate unsafe practices and conditions on sites where ammunition and explosives (A&E) are used or stored. Military explosives safety specialist are deployed along with U.S. Military forces to maintain safe storage and use of A&E. They are responsible to recommend to military command ways to store A&E that reduce the risk of injury or death to service men and women in case of an accidental detonation or if the A&E supply is hit by enemy attack.

Much of the work of military explosives safety specialist is identical to their civilian counterparts. They have offices where they analyze data and write reports to upper commands on the storage of A&E. Much of their time is spent reviewing or preparing explosives safety site plans. An explosives site plan (ESS) is the composite risk management (CRM) process associated with explosives/toxic chemical activities to ensure the minimum risk to personnel, equipment, and assets, while meeting mission requirements. The damage or injury potential of explosions is determined by the separation distance between potential explosion sites (PES) and exposed sites (ES); the ability of the PES to suppress blast overpressure, primary and secondary fragments; and the ability of the ES to resist explosion effects. Planning for the proper location and construction of A&E facilities and surrounding facilities exposed to A&E facilities is a key element of the explosives/toxic chemical site planning process. This management process also ensures that risks above those normally accepted for A&E activities are identified and approved at the proper level of command.

Explosives Safety Specialist must often travel to different storage sites to verify that the military installation is meeting the service explosives safety regulations.

Explosives Safety Specialist often works with other safety professionals. They are required to know OSHA, EPA, NFPA and other consensus standards when looking at safety and if these regulations are stricter than their service regulation they must apply these standards and regulations. They must also know Alcohol, Tobacco, and Firearms (ATF) regulations dealing with A&E and apply those standards if it is required. They must be able to convince people the need for following prescribes explosives safety standards/regulations. They must also work with ammunition cleanup sites insuring that safety laws and regulations as well as industry standards are followed. They should be good at solving problems.

The military is not the only industry to use explosives safety specialist but are by far the largest employer. Mining and construction also use explosives safety specialist to evaluate hazard and risk from explosives and blasting operations. Ammunition and explosives manufactures also use these professionals. Outside the military explosives safety specialist must apply and be knowledgeable of ATF, OSHA, EPA, NFPA, as well as state and local regulations dealing with safety of A&E.

See also

  • Explosion protection
    Explosion protection
    Explosion protection is used to protect all sorts of buildings and civil engineering infrastructure against internal and external explosions or deflagrations. It was widely believed until recently that a building subject to an explosive attack had a chance to remain standing only if it possessed...

  • Explosion vent
    Explosion vent
    An explosion vent is a safety device to protect equipment or buildings against excessive internal, explosion-incurred pressures, by means of pressure relief. An explosion vent will relieve pressure from the instant its opening pressure pstat has been exceeded.Several explosion vent panels can be...

  • Explosive material
    Explosive material
    An explosive material, also called an explosive, is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure...

  • Explosives shipping classification system
    Explosives shipping classification system
    The matrix of the various United Nations Explosives shipping classification system and typical uses. Each classification consists of a Class Number that indicates the shipping hazard and a Compatibility group suffix describing the type of material in general. This is not to be relied upon for the...


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK