Equilibrium thermodynamics

Equilibrium thermodynamics

Discussion

Encyclopedia
Equilibrium Thermodynamics is the systematic study of transformations of matter and energy in systems as they approach equilibrium. The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle
Carnot cycle
The Carnot cycle is a theoretical thermodynamic cycle proposed by Nicolas Léonard Sadi Carnot in 1824 and expanded by Benoit Paul Émile Clapeyron in the 1830s and 40s. It can be shown that it is the most efficient cycle for converting a given amount of thermal energy into work, or conversely,...

. Here, typically a system, as cylinder of gas, is set out of balance via heat input from a combustion reaction
Combustion
Combustion or burning is the sequence of exothermic chemical reactions between a fuel and an oxidant accompanied by the production of heat and conversion of chemical species. The release of heat can result in the production of light in the form of either glowing or a flame...

. Then, through a series of steps, as the system settles into its final equilibrium state, work is extracted.

In an equilibrium state there are no unbalanced potentials, or driving forces, within the system. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state, subject to accurately specified constraints, to calculate what the state of the system will be once it has reached equilibrium. An equilibrium state is obtained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy
Gibbs free energy
In thermodynamics, the Gibbs free energy is a thermodynamic potential that measures the "useful" or process-initiating work obtainable from a thermodynamic system at a constant temperature and pressure...

and a maximum of their entropy
Entropy
Entropy is a thermodynamic property that can be used to determine the energy available for useful work in a thermodynamic process, such as in energy conversion devices, engines, or machines. Such devices can only be driven by convertible energy, and have a theoretical maximum efficiency when...

.

Equilibrium thermodynamics differs from non-equilibrium thermodynamics
Non-equilibrium thermodynamics
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium; for they are changing or can be triggered to change over time, and are continuously and discontinuously...

, in that, with the latter, the state of the system under investigation will typically not be uniform but will vary locally in those as energy, entropy, and temperature distributions as gradients are imposed by dissipative thermodynamic fluxes. In equilibrium thermodynamics, by contrast, the state of the system will be considered uniform throughout, defined macroscopically by those quantities as temperature, pressure, or volume. Here, typically, systems are studied as they change from one state to another

Ruppeiner geometry
Ruppeiner geometry
Ruppeiner geometry is thermodynamic geometry using the language of Riemannian geometry to study thermodynamics. George Ruppeiner proposed it in 1979...

is a type of information geometry used to study thermodynamics. It claims that thermodynamic systems can be represented by Riemannian geometry
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point which varies smoothly from point to point. This gives, in particular, local notions of angle, length...

, and that statistical properties can be derived from the model. This geometrical model is based on the idea that there exist equilibrium states which can be represented by points on two-dimensional surface and the distance between these equilibrium states is related to the fluctuation between them.