Active galactic nucleus
Encyclopedia
An active galactic nucleus (AGN) is a compact region at the centre of a galaxy
Galaxy
A galaxy is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium of gas and dust, and an important but poorly understood component tentatively dubbed dark matter. The word galaxy is derived from the Greek galaxias , literally "milky", a...

 that has a much higher than normal luminosity
Luminosity
Luminosity is a measurement of brightness.-In photometry and color imaging:In photometry, luminosity is sometimes incorrectly used to refer to luminance, which is the density of luminous intensity in a given direction. The SI unit for luminance is candela per square metre.The luminosity function...

 over at least some portion, and possibly all, of the electromagnetic spectrum
Electromagnetic spectrum
The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object....

. Such excess emission has been observed in the radio
Radio waves
Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths from 1 millimeter to 100 kilometers. Like all other electromagnetic waves,...

, infrared
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

, optical
Visible spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths from about 390 to 750 nm. In terms of...

, ultra-violet, X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

 and gamma ray
Gamma ray
Gamma radiation, also known as gamma rays or hyphenated as gamma-rays and denoted as γ, is electromagnetic radiation of high frequency . Gamma rays are usually naturally produced on Earth by decay of high energy states in atomic nuclei...

 wavebands. A galaxy hosting an AGN is called an active galaxy. The radiation from AGN is believed to be a result of accretion
Accretion (astrophysics)
In astrophysics, the term accretion is used for at least two distinct processes.The first and most common is the growth of a massive object by gravitationally attracting more matter, typically gaseous matter in an accretion disc. Accretion discs are common around smaller stars or stellar remnants...

 of mass by the supermassive black hole
Supermassive black hole
A supermassive black hole is the largest type of black hole in a galaxy, in the order of hundreds of thousands to billions of solar masses. Most, and possibly all galaxies, including the Milky Way, are believed to contain supermassive black holes at their centers.Supermassive black holes have...

 at the centre of the host galaxy. AGN are the most luminous persistent sources of electromagnetic radiation in the universe, and as such can be used as a means of discovering distant objects; their evolution as a function of cosmic time also provides constraints on models of the cosmos
Cosmology
Cosmology is the discipline that deals with the nature of the Universe as a whole. Cosmologists seek to understand the origin, evolution, structure, and ultimate fate of the Universe at large, as well as the natural laws that keep it in order...

.

Discovery

The issue of the activity of nuclei of galaxies (AGN) was first raised by Soviet-Armenian physicist Prof. Victor Ambartsumian in the early 1950s. Although the idea concerning the activity of galactic nuclei for the first time was accepted very skeptically, after many years, as a result of the pressure of observations (the discovery of quasars, radio outbursts of galaxies, consequences of explosions in nuclei, ejection from nuclei, etc.) it did gain recognition. The concept of AGN now is widely accepted.

Models of the active nucleus

For a long time it has been argued that AGN must be powered by accretion
Accretion (astrophysics)
In astrophysics, the term accretion is used for at least two distinct processes.The first and most common is the growth of a massive object by gravitationally attracting more matter, typically gaseous matter in an accretion disc. Accretion discs are common around smaller stars or stellar remnants...

 onto massive black holes (with masses between 106 and 1010 times that of the Sun). AGN are both compact and persistently extremely luminous; accretion can potentially give very efficient conversion of potential and kinetic energy to radiation, and a massive black hole has a high Eddington luminosity
Eddington luminosity
The Eddington luminosity in a star is defined as the point where the gravitational force inwards equals the continuum radiation force outwards, assuming hydrostatic equilibrium and spherical symmetry. When exceeding the Eddington luminosity, a star would initiate a very intense continuum-driven...

, so that it can provide the observed high persistent luminosity. Central supermassive black holes are now believed to exist in the centers of most or all massive galaxies: the mass of the black hole correlates well with the velocity dispersion
Velocity dispersion
In astronomy, the velocity dispersion σ, is the range of velocities about the mean velocity for a group of objects, such as a cluster of stars about a galaxy...

 of the galaxy bulge (the M-sigma relation
M-sigma relation
The M-sigma relation is an empirical correlation between the stellar velocity dispersion \sigma of a galaxy bulge and the mass M of the supermassive black hole atthe galaxy's center.The relation can be expressed mathematically as...

) or with bulge luminosity (e.g.). Thus AGN-like characteristics are expected whenever a supply of material for accretion comes within the sphere of influence
Sphere of influence (astrodynamics)
A sphere of influence in astrodynamics and astronomy is the spherical region around a celestial body where the primary gravitational influence on an orbiting object is that body...

 of the central black hole.

Accretion disk

In the standard model of AGN, cold material close to the central black hole forms an accretion disc
Accretion disc
An accretion disc is a structure formed by diffuse material in orbital motion around a central body. The central body is typically a star. Gravity causes material in the disc to spiral inward towards the central body. Gravitational forces compress the material causing the emission of...

. Dissipative processes in the accretion disc transport matter inwards and angular momentum outwards, while causing the accretion disc to heat up. The expected spectrum of an accretion disc around a supermassive black hole peaks in the optical-ultraviolet waveband; in addition, a corona
Corona
A corona is a type of plasma "atmosphere" of the Sun or other celestial body, extending millions of kilometers into space, most easily seen during a total solar eclipse, but also observable in a coronagraph...

 of hot material forms above the accretion disc and can inverse-Compton scatter
Compton scattering
In physics, Compton scattering is a type of scattering that X-rays and gamma rays undergo in matter. The inelastic scattering of photons in matter results in a decrease in energy of an X-ray or gamma ray photon, called the Compton effect...

 photons up to X-ray energies. The radiation from the accretion disc excites cold atomic material close to the black hole and this radiates via emission lines. A large fraction of the AGN's primary output may be obscured by interstellar gas and dust close to the accretion disc, but (in a steady-state situation) this will be re-radiated at some other waveband, most likely the infrared.

Relativistic jets

At least some accretion discs produce jet
Relativistic jet
Relativistic jets are extremely powerful jets of plasma which emerge from presumed massive objects at the centers of some active galaxies, notably radio galaxies and quasars. Their lengths can reach several thousand or even hundreds of thousands of light years...

s, twin highly collimated and fast outflows that emerge in opposite directions from close to the disc (the direction of the jet ejection must be determined either by the angular momentum axis of the disc or the spin axis of the black hole). The jet production mechanism and indeed the jet composition on very small scales are not known at present, as observations cannot distinguish between the various theoretical models that exist. The jets have the most obvious observational effects in the radio waveband, where Very Long Baseline Interferometry
Very Long Baseline Interferometry
Very Long Baseline Interferometry is a type of astronomical interferometry used in radio astronomy. It allows observations of an object that are made simultaneously by many telescopes to be combined, emulating a telescope with a size equal to the maximum separation between the telescopes.Data...

 can be used to study the synchrotron radiation they emit down to sub-parsec
Parsec
The parsec is a unit of length used in astronomy. It is about 3.26 light-years, or just under 31 trillion kilometres ....

 scales. However, they radiate in all wavebands from the radio through to the gamma-ray via the synchrotron
Synchrotron
A synchrotron is a particular type of cyclic particle accelerator in which the magnetic field and the electric field are carefully synchronised with the travelling particle beam. The proton synchrotron was originally conceived by Sir Marcus Oliphant...

 and inverse-Compton
Compton scattering
In physics, Compton scattering is a type of scattering that X-rays and gamma rays undergo in matter. The inelastic scattering of photons in matter results in a decrease in energy of an X-ray or gamma ray photon, called the Compton effect...

 process, and so AGN with jets have a second potential source of any observed continuum radiation.

Radiatively inefficient AGN

There exists a class of 'radiatively inefficient' solutions to the equations that govern accretion. The most widely known of these is the Advection Dominated Accretion Flow (ADAF), but others exist. In this type of accretion, which is important for accretion rates well below the Eddington limit, the accreting matter does not form a thin disc and consequently does not radiate away the energy that it has acquired in moving close to the black hole. Radiatively inefficient accretion has been used to explain the lack of strong AGN-type radiation from massive black holes in the centres of elliptical galaxies in clusters, where otherwise we might expect high accretion rates and corresponding high luminosities. Radiatively inefficient AGN would be expected to lack many of the characteristic features of standard AGN with an accretion disc.

Observational characteristics

There is no single observational signature of an AGN. The list below covers some of the historically important features that have allowed systems to be identified as AGN.
  • Nuclear optical continuum emission. This is visible whenever we have a direct view of the accretion disc. Jets can also contribute to this component of the AGN emission. The optical emission has a roughly power-law dependence on wavelength.
  • Nuclear infra-red emission. This is visible whenever the accretion disc and its environment are obscured by gas and dust close to the nucleus and then re-emitted ('reprocessing'). As it is thermal emission, it can be distinguished from any jet or disc-related component.
  • Broad optical emission lines. These come from cold material close to the central black hole. The lines are broad because the emitting material is revolving around the black hole with high speeds, emitting photons at varying Doppler shifts.
  • Narrow optical emission lines. These come from more distant cold material, and so are narrower than the broad lines.
  • Radio continuum emission. This is always due to a jet. It shows a spectrum characteristic of synchrotron radiation.
  • X-ray continuum emission. This can arise both from a jet and from the hot corona of the accretion disc via scattering processes: in both cases it shows a power-law spectrum. In some radio-quiet AGN there is a `soft excess' in the X-ray emission in addition to the power-law component. The origin of the soft excess is not clear at present.
  • X-ray line emission. This is a result of illumination of cold heavy elements by the X-ray continuum. Fluorescence
    Fluorescence
    Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation of a different wavelength. It is a form of luminescence. In most cases, emitted light has a longer wavelength, and therefore lower energy, than the absorbed radiation...

     gives rise to various emission lines, the best-known of which is the iron feature around 6.4 keV
    Kev
    Kev can refer to:*Kev Hawkins, a fictional character.*Kevin, a given name occasionally shortened to "Kev".*Kiloelectronvolt, a unit of energy who symbol is "KeV".* Krefelder Eislauf-VereinKEV can refer to:...

    . This line may be narrow or broad: relativistically broadened iron lines
    Broad Iron K line
    In astronomy, the broad iron K line is a spectral line that is an accurate measure of a black hole's immense gravitational force. The name refers to the shape, on a spectrogram, of light emitted by iron atoms near the black hole surface...

     can be used to study the dynamics of the accretion disc very close to the nucleus and therefore the nature of the central black hole.

Types of active galaxy

It is convenient to divide AGN into two classes, conventionally called radio-quiet and radio-loud. In the radio-loud objects a contribution from the jet(s) and the lobes they inflate dominates the luminosity of the AGN, at least at radio wavelengths but possibly at some or all others. Radio-quiet objects are simpler since jet and jet-related emission can be neglected.

AGN terminology is often confusing, since the distinctions between different types of AGN sometimes reflect historical differences in how objects were discovered or initially classified, rather than real physical differences.

Radio-quiet AGN

  • Low-ionization nuclear emission-line region
    Low-ionization nuclear emission-line region
    A low-ionization nuclear emission-line region is a type of galactic nucleus that is defined by its spectral line emission. The spectra typically include line emission from weakly ionized or neutral atoms, such as O, O+, N+, and S+. Conversely, the spectral line emission from strongly ionized...

    s (LINERs). As the name suggests, these systems show only weak nuclear emission-line regions, and no other signatures of AGN emission. It is debatable whether all such systems are true AGN (powered by accretion on to a supermassive black hole). If they are, they constitute the lowest-luminosity class of radio-quiet AGN. Some may be radio-quiet analogues of the low-excitation radio galaxies (see below).
  • Seyfert galaxies
    Seyfert galaxy
    Seyfert galaxies are a class of galaxies with nuclei that produce spectral line emission from highly ionized gas, named after Carl Keenan Seyfert, the astronomer who first identified the class in 1943...

    . Seyferts were the earliest distinct class of AGN to be identified. They show optical nuclear continuum emission, narrow and (sometimes) broad emission lines, (sometimes) strong nuclear X-ray emission and sometimes a weak small-scale radio jet. Originally they were divided into two types known as Seyfert 1 and 2: Seyfert 1s show strong broad emission lines while Seyfert 2s do not, and Seyfert 1s are more likely to show strong low-energy X-ray emission. Various forms of elaboration on this scheme exist: for example, Seyfert 1s with relatively narrow broad lines are sometimes referred to as narrow-line Seyfert 1s. The host galaxies of Seyferts are usually spiral or irregular galaxies.
  • Radio-quiet quasar
    Quasar
    A quasi-stellar radio source is a very energetic and distant active galactic nucleus. Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than...

    s/QSOs. These are essentially more luminous versions of Seyfert 1s: the distinction is arbitrary and is usually expressed in terms of a limiting optical magnitude. Quasars were originally 'quasi-stellar' in optical images, and so had optical luminosities that were greater than that of their host galaxy. They always show strong optical continuum emission, X-ray continuum emission, and broad and narrow optical emission lines. Some astronomers use the term QSO (Quasi-Stellar Object) for this class of AGN, reserving 'quasar' for radio-loud objects, while others talk about radio-quiet and radio-loud quasars. The host galaxies of quasars can be spirals, irregulars or ellipticals: there is a correlation between the quasar's luminosity and the mass of its host galaxy, so that the most luminous quasars inhabit the most massive galaxies (ellipticals).
  • 'Quasar 2s'. By analogy with Seyfert 2s, these are objects with quasar-like luminosities but without strong optical nuclear continuum emission or broad line emission. They are hard to find in surveys, though a number of possible candidate quasar 2s have been identified.

Radio-loud AGN

See main article radio galaxies for discussion of the large-scale behaviour of the jets. Here only the active nuclei are discussed.
  • Radio-loud quasars. These behave exactly like radio-quiet quasars with the addition of emission from a jet. Thus they show strong optical continuum emission, broad and narrow emission lines, and strong X-ray emission, together with nuclear and often extended radio emission.
  • 'Blazars' (BL Lac objects and OVV quasar
    OVV quasar
    An optically violent variable quasar is a type of highly variable quasar. It is a subtype of blazar that consists of a few rare, bright radio galaxies, whose visible light output can change by 50% in a day. They are similar in appearance to BL Lacs but generally have a stronger broad emission...

    s). These classes are distinguished by rapidly variable, polarized optical, radio and X-ray emission. BL Lac objects show no optical emission lines, broad or narrow, so that their redshifts can only be determined from features in the spectra of their host galaxies. The emission-line features may be intrinsically absent or simply swamped by the additional variable component: in the latter case, emission lines may become visible when the variable component is at a low level. OVV quasars behave more like standard radio-loud quasars with the addition of a rapidly variable component. In both classes of source, the variable emission is believed to originate in a relativistic jet oriented close to the line of sight. Relativistic effects amplify both the luminosity of the jet and the amplitude of variability.
  • Radio galaxies. These objects show nuclear and extended radio emission. Their other AGN properties are heterogeneous. They can broadly be divided into low-excitation and high-excitation classes. Low-excitation objects show no strong narrow or broad emission lines, and the emission lines they do have may be excited by a different mechanism. Their optical and X-ray nuclear emission is consistent with originating purely in a jet. They may be the best current candidates for AGN with radiatively inefficient accretion. By contrast, high-excitation objects (narrow-line radio galaxies) have emission-line spectra similar to those of Seyfert 2s. The small class of broad-line radio galaxies, which show relatively strong nuclear optical continuum emission probably includes some objects that are simply low-luminosity radio-loud quasars. The host galaxies of radio galaxies, whatever their emission-line type, are essentially always ellipticals.

Summary

These galaxies can be broadly summarised by the following table:
|+ Differences between active galaxy types and normal galaxies.
! rowspan=2 | Galaxy Type
! rowspan=2 | Active
Nuclei
! colspan="2" |Emission Lines
! rowspan=2 | X-rays
! colspan="2" |Excess of
! rowspan=2 |Strong
Radio
! rowspan=2 |Jets
! rowspan=2 |Variable
! rowspan=2 | Radio
loud
|-
!Narrow !! Broad !! UV !! Far-IR
|-
!Normal
| no >
weak none weak none none none none no >-
!Starburst
Starburst galaxy
A starburst galaxy is a galaxy in the process of an exceptionally high rate of star formation, compared to the usual star formation rate seen in most galaxies. Galaxies are often observed to have a burst of star formation after a collision or close encounter between two galaxies...


| no
yes no some no yes some no no >-
!Seyfert
Seyfert galaxy
Seyfert galaxies are a class of galaxies with nuclei that produce spectral line emission from highly ionized gas, named after Carl Keenan Seyfert, the astronomer who first identified the class in 1943...

 I
| yes
yes yes some some yes few no yes >-
!Seyfert II
| yes
yes no some some yes few yes yes >-
!Quasar
Quasar
A quasi-stellar radio source is a very energetic and distant active galactic nucleus. Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than...


| yes
yes yes some yes yes some some yes >-
!Blazar
Blazar
A blazar is a very compact quasar associated with a presumed supermassive black hole at the center of an active, giant elliptical galaxy...


| yes
no some yes yes no yes yes yes >-
!BL Lac
BL Lac object
A BL Lacertae object or BL Lac object is a type of active galaxy with an active galactic nucleus and is named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical...


| yes
no none/faint yes yes no yes yes yes >-
!OVV
| yes
no stronger than BL Lac yes yes no yes yes yes >-
!Radio galaxy
Radio galaxy
Radio galaxies and their relatives, radio-loud quasars and blazars, are types of active galaxy that are very luminous at radio wavelengths, with luminosities up to 1039 W between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process...


| yes
some some some some yes yes yes yes >-

Unification

Unified models of AGN unite two or more classes of objects, based on the traditional observational classifications, by proposing that they are really a single type of physical object observed under different conditions. The currently favoured unified models are 'orientation-based unified models' meaning that they propose that the apparent differences between different types of objects arise simply because of their different orientations to the observer. For an overview of these see and, though some details in the discussion below have emerged since these reviews were written.

Radio-quiet unification

At low luminosities, the objects to be unified are Seyfert galaxies. The unified models propose that in Seyfert 1s the observer has a direct view of the active nucleus. In Seyfert 2s it is observed through an obscuring structure which prevents a direct view of the optical continuum, broad-line region or (soft) X-ray emission. The key insight of orientation-dependent accretion models is that the two types of object can be the same if only certain angles to the line of sight are observed. The standard picture is of a torus
Torus
In geometry, a torus is a surface of revolution generated by revolving a circle in three dimensional space about an axis coplanar with the circle...

 of obscuring material surrounding the accretion disc. It must be large enough to obscure the broad-line region but not large enough to obscure the narrow-line region, which is seen in both classes of object. Seyfert 2s are seen through the torus. Outside the torus there is material that can scatter some of the nuclear emission into our line of sight, allowing us to see some optical and X-ray continuum and, in some cases, broad emission lines—which are strongly polarized, showing that they have been scattered and proving that some Seyfert 2s really do contain hidden Seyfert 1s. Infrared observations of the nuclei of Seyfert 2s also support this picture.

At higher luminosities, quasars take the place of Seyfert 1s, but, as already mentioned, the corresponding 'quasar 2s' are elusive at present. If they do not have the scattering component of Seyfert 2s they would be hard to detect except through their luminous narrow-line and hard X-ray emission.

Radio-loud unification

Historically work on radio-loud unification has concentrated on high-luminosity radio-loud quasars. These can be unified with narrow-line radio galaxies in a manner directly analoguous to the Seyfert 1/2 unification (but without the complication of much in the way of a reflection component: narrow-line radio galaxies show no nuclear optical continuum or reflected X-ray component, although they do occasionally show polarized broad-line emission). The large-scale radio structures of these objects provide compelling evidence that the orientation-based unified models really are true. X-ray evidence, where available, supports the unified picture: radio galaxies show evidence of obscuration from a torus, while quasars do not, although care must be taken since radio-loud objects also have a soft unabsorbed jet-related component, and high resolution is necessary to separate out thermal emission from the sources' large-scale hot-gas environment. At very small angles to the line of sight, relativistic beaming dominates, and we see a blazar of some variety.

However, the population of radio galaxies is completely dominated by low-luminosity, low-excitation objects. These do not show strong nuclear emission lines — broad or narrow — they have optical continua which appear to be entirely jet-related, and their X-ray emission is also consistent with coming purely from a jet, with no heavily absorbed nuclear component in general. These objects cannot be unified with quasars, even though they include some high-luminosity objects when looking at radio emission, since the torus can never hide the narrow-line region to the required extent, and since infrared studies show that they have no hidden nuclear component: in fact there is no evidence for a torus in these objects at all. Most likely, they form a separate class in which only jet-related emission is important. At small angles to the line of sight, they will appear as BL Lac objects.

Cosmological uses and evolution

For a long time, active galaxies held all the records for the highest-redshift
Redshift
In physics , redshift happens when light seen coming from an object is proportionally increased in wavelength, or shifted to the red end of the spectrum...

 objects known, because of their high luminosity (either in the optical or the radio): they still have a role to play in studies of the early universe, but it is now recognised that by its nature an AGN gives a highly biased picture of the 'typical' high-redshift galaxy.

More interesting is the study of the evolution of the AGN population. Most luminous classes of AGN (radio-loud and radio-quiet) seem to have been much more numerous in the early universe. This suggests (1) that massive black holes formed early on and (2) that the conditions for the formation of luminous AGN were more readily available in the early universe — for example, that there was a much higher availability of cold gas near the centre of galaxies than there is now. It also implies, of course, that many objects that were once luminous quasars are now much less luminous, or entirely quiescent. The evolution of the low-luminosity AGN population is much less well constrained because of the difficulty of detecting and observing these objects at high redshifts.

See also

  • Radio galaxy
    Radio galaxy
    Radio galaxies and their relatives, radio-loud quasars and blazars, are types of active galaxy that are very luminous at radio wavelengths, with luminosities up to 1039 W between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process...

  • Quasar
    Quasar
    A quasi-stellar radio source is a very energetic and distant active galactic nucleus. Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than...

  • Supermassive black hole
    Supermassive black hole
    A supermassive black hole is the largest type of black hole in a galaxy, in the order of hundreds of thousands to billions of solar masses. Most, and possibly all galaxies, including the Milky Way, are believed to contain supermassive black holes at their centers.Supermassive black holes have...

  • M-sigma relation
    M-sigma relation
    The M-sigma relation is an empirical correlation between the stellar velocity dispersion \sigma of a galaxy bulge and the mass M of the supermassive black hole atthe galaxy's center.The relation can be expressed mathematically as...

  • Relativistic jet
    Relativistic jet
    Relativistic jets are extremely powerful jets of plasma which emerge from presumed massive objects at the centers of some active galaxies, notably radio galaxies and quasars. Their lengths can reach several thousand or even hundreds of thousands of light years...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK